lama_byterun/runtime/gc.c

789 lines
25 KiB
C
Raw Normal View History

2023-05-31 11:01:11 +02:00
#define _GNU_SOURCE 1
#include "gc.h"
2023-05-31 11:01:11 +02:00
#include "runtime_common.h"
2023-05-31 11:01:11 +02:00
#include <assert.h>
#include <execinfo.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
2023-05-31 11:01:11 +02:00
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
static const size_t INIT_HEAP_SIZE = MINIMUM_HEAP_CAPACITY;
#ifdef FULL_INVARIANT_CHECKS
size_t cur_id = 0;
#endif
static extra_roots_pool extra_roots;
extern size_t __gc_stack_top, __gc_stack_bottom;
#ifndef DEBUG_VERSION
extern const size_t __start_custom_data, __stop_custom_data;
#endif
#ifdef DEBUG_VERSION
memory_chunk heap;
#else
static memory_chunk heap;
#endif
#ifdef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
void dump_heap ();
#endif
2023-05-31 11:01:11 +02:00
void handler (int sig) {
void *array[10];
size_t size;
2023-05-31 11:01:11 +02:00
// get void*'s for all entries on the stack
size = backtrace(array, 10);
fprintf(stderr, "heap size is %zu\n", heap.size);
2023-05-31 11:01:11 +02:00
backtrace_symbols_fd(array, size, STDERR_FILENO);
exit(1);
}
2023-05-31 11:01:11 +02:00
void *alloc (size_t size) {
#ifdef FULL_INVARIANT_CHECKS
2023-05-31 11:01:11 +02:00
++cur_id;
#endif
size_t bytes_sz = size;
2023-05-31 11:01:11 +02:00
size = BYTES_TO_WORDS(size);
fprintf(stderr, "allocation of size %zu words (%zu bytes)\n", size, bytes_sz);
2023-05-31 11:01:11 +02:00
void *p = gc_alloc_on_existing_heap(size);
if (!p) {
// not enough place in heap, need to perform GC cycle
return gc_alloc(size);
}
return p;
}
#ifdef FULL_INVARIANT_CHECKS
// precondition: obj_content is a valid address pointing to the content of an object
static void print_object_info(FILE *f, void *obj_content) {
data *d = TO_DATA(obj_content);
size_t obj_tag = TAG(d->data_header);
size_t obj_id = d->id;
fprintf(f, "id %zu tag %zu | ", obj_id, obj_tag);
}
static void print_unboxed (FILE *f, int unboxed) {
fprintf(f, "unboxed %zu | ", unboxed);
}
static FILE *print_stack_content (char *filename) {
FILE *f = fopen(filename, "w+");
ftruncate(fileno(f), 0);
fprintf(f, "Stack content:\n");
for (size_t *stack_ptr = (size_t *) ((void*)__gc_stack_top + 4); stack_ptr < (size_t *) __gc_stack_bottom; ++stack_ptr) {
size_t value = *stack_ptr;
if (is_valid_heap_pointer((size_t *) value)) {
print_object_info(f, (void *) value);
} else {
print_unboxed(f, (int) value);
}
fprintf(f, "\n");
}
fprintf(f, "Stack content end.\n");
return f;
}
// precondition: obj_content is a valid address pointing to the content of an object
static void objects_dfs (FILE *f, void *obj_content) {
void *obj_header = get_obj_header_ptr(obj_content);
data *obj_data = TO_DATA(obj_content);
// internal mark-bit for this dfs, should be recovered by the caller
if ((obj_data->forward_address & 2) != 0) {
return;
}
// set this bit as 1
obj_data->forward_address |= 2;
fprintf(f, "object at addr %p: ", obj_content);
print_object_info(f, obj_content);
/*fprintf(f, "object id: %zu | ", obj_data->id);*/
// first cycle: print object's fields
for (obj_field_iterator field_it = ptr_field_begin_iterator(obj_header);
!field_is_done_iterator(&field_it);
obj_next_field_iterator(&field_it)) {
size_t field_value = *(size_t *) field_it.cur_field;
if (is_valid_heap_pointer((size_t *) field_value)) {
print_object_info(f, (void *) field_value);
/*fprintf(f, "%zu ", TO_DATA(field_value)->id);*/
} else {
print_unboxed(f, (int) field_value);
}
}
fprintf(f, "\n");
for (obj_field_iterator field_it = ptr_field_begin_iterator(obj_header);
!field_is_done_iterator(&field_it);
obj_next_field_iterator(&field_it)) {
size_t field_value = *(size_t *) field_it.cur_field;
if (is_valid_heap_pointer((size_t *) field_value)) {
objects_dfs(f, (void*) field_value);
}
}
}
FILE *print_objects_traversal(char *filename, bool marked) {
FILE *f = fopen(filename, "w+");
ftruncate(fileno(f), 0);
for (heap_iterator it = heap_begin_iterator();
!heap_is_done_iterator(&it);
heap_next_obj_iterator(&it)) {
void *obj_header = it.current;
data *obj_data = TO_DATA(get_object_content_ptr(obj_header));
if ((obj_data->forward_address & 1) == marked) {
objects_dfs(f, get_object_content_ptr(obj_header));
}
}
// resetting bit that represent mark-bit for this internal dfs-traversal
for (heap_iterator it = heap_begin_iterator();
!heap_is_done_iterator(&it);
heap_next_obj_iterator(&it)) {
void *obj_header = it.current;
data *obj_data = TO_DATA(get_object_content_ptr(obj_header));
obj_data->forward_address &= (~2);
}
fflush(f);
return f;
}
int files_cmp(FILE *f1, FILE *f2) {
int symbol1, symbol2;
int position = 0;
while (true) {
symbol1 = fgetc(f1);
symbol2 = fgetc(f2);
if (symbol1 == EOF && symbol2 == EOF) {
return -1;
}
if (symbol1 != symbol2) {
return position;
}
++position;
}
}
#endif
2023-05-31 11:01:11 +02:00
void *gc_alloc_on_existing_heap (size_t size) {
if (heap.current + size <= heap.end) {
void *p = (void *)heap.current;
heap.current += size;
memset(p, 0, size * sizeof(size_t));
return p;
2023-05-31 11:01:11 +02:00
}
return NULL;
}
2023-05-31 11:01:11 +02:00
void *gc_alloc (size_t size) {
fprintf(stderr, "GC cycle has started\n");
#ifdef FULL_INVARIANT_CHECKS
FILE *stack_before = print_stack_content("stack-dump-before-compaction");
#endif
2023-05-31 11:01:11 +02:00
mark_phase();
#ifdef FULL_INVARIANT_CHECKS
FILE *heap_before_compaction = print_objects_traversal("after-mark", 1);
#endif
2023-05-31 11:01:11 +02:00
compact_phase(size);
#ifdef FULL_INVARIANT_CHECKS
FILE *stack_after = print_stack_content("stack-dump-after-compaction");
FILE *heap_after_compaction = print_objects_traversal("after-compaction", 0);
int pos = files_cmp(stack_before, stack_after);
if (pos >= 0) { // position of difference is found
fprintf(stderr, "Stack is modified incorrectly, see position %d\n", pos);
exit(1);
}
pos = files_cmp(heap_before_compaction, heap_after_compaction);
if (pos >= 0) { // position of difference is found
fprintf(stderr, "GC invariant is broken, pos is %d\n", pos);
exit(1);
}
fclose(heap_before_compaction);
fclose(heap_after_compaction);
#endif
fprintf(stderr, "GC cycle has finished\n");
2023-05-31 11:01:11 +02:00
return gc_alloc_on_existing_heap(size);
}
2023-05-31 11:01:11 +02:00
void mark_phase (void) {
fprintf(stderr, "marking has started\n");
2023-05-31 11:01:11 +02:00
__gc_root_scan_stack();
scan_extra_roots();
#ifndef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
scan_global_area();
#endif
fprintf(stderr, "marking has finished\n");
}
2023-05-31 11:01:11 +02:00
void compact_phase (size_t additional_size) {
size_t live_size = compute_locations();
2023-05-31 11:01:11 +02:00
// all in words
size_t next_heap_size =
MAX(live_size * EXTRA_ROOM_HEAP_COEFFICIENT + additional_size, MINIMUM_HEAP_CAPACITY);
size_t next_heap_pseudo_size =
MAX(next_heap_size, heap.size); // this is weird but here is why it happens:
// if we allocate too little heap right now, we may lose access to some alive objects
// however, after we physically relocate all of our objects we will shrink allocated memory if it is possible
2023-05-31 11:01:11 +02:00
memory_chunk old_heap = heap;
heap.begin = mremap(
heap.begin, WORDS_TO_BYTES(heap.size), WORDS_TO_BYTES(next_heap_pseudo_size), MREMAP_MAYMOVE);
if (heap.begin == MAP_FAILED) {
perror("ERROR: compact_phase: mremap failed\n");
exit(1);
}
heap.end = heap.begin + next_heap_pseudo_size;
heap.size = next_heap_pseudo_size;
heap.current = heap.begin + (old_heap.current - old_heap.begin);
update_references(&old_heap);
physically_relocate(&old_heap);
/* // shrink it if possible, otherwise this code won't do anything, in both cases references
2023-05-31 11:01:11 +02:00
// will remain valid
heap.begin = mremap(
heap.begin,
WORDS_TO_BYTES(heap.size),
WORDS_TO_BYTES(next_heap_size),
0 // in this case we don't set MREMAP_MAYMOVE because it shouldn't move :)
2023-05-31 11:01:11 +02:00
);
if (heap.begin == MAP_FAILED) {
perror("ERROR: compact_phase: mremap failed\n");
exit(1);
}
heap.end = heap.begin + next_heap_size;
heap.size = next_heap_size;
*/
2023-05-31 11:01:11 +02:00
heap.current = heap.begin + live_size;
}
size_t compute_locations () {
fprintf(stderr, "GC compute_locations started\n");
2023-05-31 11:01:11 +02:00
size_t *free_ptr = heap.begin;
heap_iterator scan_iter = heap_begin_iterator();
for (; !heap_is_done_iterator(&scan_iter); heap_next_obj_iterator(&scan_iter)) {
void *header_ptr = scan_iter.current;
void *obj_content = get_object_content_ptr(header_ptr);
if (is_marked(obj_content)) {
size_t sz = BYTES_TO_WORDS(obj_size_header_ptr(header_ptr));
// forward address is responsible for object header pointer
set_forward_address(obj_content, (size_t)free_ptr);
free_ptr += sz;
}
}
fprintf(stderr, "GC compute_locations finished\n");
2023-05-31 11:01:11 +02:00
// it will return number of words
return free_ptr - heap.begin;
}
void scan_and_fix_region (memory_chunk *old_heap, void *start, void *end) {
fprintf(stderr, "GC scan_and_fix_region started\n");
2023-05-31 11:01:11 +02:00
for (size_t *ptr = (size_t *)start; ptr < (size_t *)end; ++ptr) {
size_t ptr_value = *ptr;
// this can't be expressed via is_valid_heap_pointer, because this pointer may point area corresponding to the old
// heap
if (is_valid_pointer((size_t *)ptr_value) && (size_t)old_heap->begin <= ptr_value
&& ptr_value <= (size_t)old_heap->current) {
void *obj_ptr = (void *)heap.begin + ((void *)ptr_value - (void *)old_heap->begin);
void *new_addr =
(void *)heap.begin + ((void *)get_forward_address(obj_ptr) - (void *)old_heap->begin);
size_t content_offset = get_header_size(get_type_row_ptr(obj_ptr));
*(void **)ptr = new_addr + content_offset;
}
}
fprintf(stderr, "GC scan_and_fix_region finished\n");
2023-05-31 11:01:11 +02:00
}
void update_references (memory_chunk *old_heap) {
fprintf(stderr, "GC update_references started\n");
2023-05-31 11:01:11 +02:00
heap_iterator it = heap_begin_iterator();
while (!heap_is_done_iterator(&it)) {
if (is_marked(get_object_content_ptr(it.current))) {
for (obj_field_iterator field_iter = ptr_field_begin_iterator(it.current);
!field_is_done_iterator(&field_iter);
obj_next_ptr_field_iterator(&field_iter)) {
size_t *field_value = *(size_t **)field_iter.cur_field;
if (field_value < old_heap->begin || field_value > old_heap->current) { continue; }
// this pointer should also be modified according to old_heap->begin
void *field_obj_content_addr =
(void *)heap.begin + (*(void **)field_iter.cur_field - (void *)old_heap->begin);
// important, we calculate new_addr very carefully here, because objects may relocate to another memory chunk
void *new_addr =
heap.begin
+ ((size_t *)get_forward_address(field_obj_content_addr) - (size_t *)old_heap->begin);
// update field reference to point to new_addr
// since, we want fields to point to an actual content, we need to add this extra content_offset
// because forward_address itself is a pointer to the object's header
size_t content_offset = get_header_size(get_type_row_ptr(field_obj_content_addr));
#ifdef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
if (!is_valid_heap_pointer((void *)(new_addr + content_offset))) {
fprintf(stderr,
"ur: incorrect pointer assignment: on object with id %d",
TO_DATA(get_object_content_ptr(it.current))->id);
exit(1);
}
2023-05-31 11:01:11 +02:00
#endif
*(void **)field_iter.cur_field = new_addr + content_offset;
}
}
2023-05-31 11:01:11 +02:00
heap_next_obj_iterator(&it);
}
// fix pointers from stack
scan_and_fix_region(old_heap, (void *)__gc_stack_top + 4, (void *)__gc_stack_bottom);
2023-05-31 11:01:11 +02:00
// fix pointers from extra_roots
scan_and_fix_region(
old_heap, (void *)extra_roots.roots, (size_t *)extra_roots.roots + extra_roots.current_free);
#ifndef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
// fix pointers from static area
scan_and_fix_region(old_heap, (void *)&__start_custom_data, (void *)&__stop_custom_data);
#endif
fprintf(stderr, "GC update_references finished\n");
}
2023-05-31 11:01:11 +02:00
void physically_relocate (memory_chunk *old_heap) {
fprintf(stderr, "GC physically_relocate started\n");
2023-05-31 11:01:11 +02:00
heap_iterator from_iter = heap_begin_iterator();
2023-05-31 11:01:11 +02:00
while (!heap_is_done_iterator(&from_iter)) {
2023-06-01 16:06:23 +02:00
void *obj = get_object_content_ptr(from_iter.current);
2023-05-31 11:01:11 +02:00
heap_iterator next_iter = from_iter;
heap_next_obj_iterator(&next_iter);
if (is_marked(obj)) {
2023-05-31 11:01:11 +02:00
// Move the object from its old location to its new location relative to
// the heap's (possibly new) location, 'to' points to future object header
size_t *to = heap.begin + ((size_t *)get_forward_address(obj) - (size_t *)old_heap->begin);
memmove(to, from_iter.current, obj_size_header_ptr(from_iter.current));
unmark_object(get_object_content_ptr(to));
}
2023-05-31 11:01:11 +02:00
from_iter = next_iter;
}
fprintf(stderr, "GC physically_relocate finished\n");
2023-05-31 11:01:11 +02:00
}
bool is_valid_heap_pointer (const size_t *p) {
return !UNBOXED(p) && (size_t)heap.begin <= (size_t)p && (size_t)p <= (size_t)heap.current;
}
bool is_valid_pointer (const size_t *p) { return !UNBOXED(p); }
static inline void queue_enqueue (heap_iterator *tail_iter, void *obj) {
void *tail = tail_iter->current;
void *tail_content = get_object_content_ptr(tail);
set_forward_address(tail_content, (size_t)obj);
make_enqueued(obj);
heap_next_obj_iterator(tail_iter);
}
static inline void *queue_dequeue (heap_iterator *head_iter) {
void *head = head_iter->current;
void *head_content = get_object_content_ptr(head);
void *value = (void *)get_forward_address(head_content);
make_dequeued(value);
heap_next_obj_iterator(head_iter);
return value;
}
void mark (void *obj) {
// fprintf(stderr, "Marking object with content address %p on the heap\n", obj);
2023-05-31 11:01:11 +02:00
if (!is_valid_heap_pointer(obj) || is_marked(obj)) { return; }
// TL;DR: [q_head_iter, q_tail_iter) q_head_iter -- current dequeue's victim, q_tail_iter -- place for next enqueue
// in forward_address of corresponding element we store address of element to be removed after dequeue operation
heap_iterator q_head_iter = heap_begin_iterator();
// iterator where we will write address of the element that is going to be enqueued
heap_iterator q_tail_iter = q_head_iter;
queue_enqueue(&q_tail_iter, obj);
// invariant: queue contains only objects that are valid heap pointers (each corresponding to content of unmarked
// object) also each object is in queue only once
while (q_head_iter.current != q_tail_iter.current) {
// while the queue is non-empty
void *cur_obj = queue_dequeue(&q_head_iter);
mark_object(cur_obj);
void *header_ptr = get_obj_header_ptr(cur_obj);
2023-05-31 11:01:11 +02:00
for (obj_field_iterator ptr_field_it = ptr_field_begin_iterator(header_ptr);
!field_is_done_iterator(&ptr_field_it);
obj_next_ptr_field_iterator(&ptr_field_it)) {
void *field_value = *(void **)ptr_field_it.cur_field;
if (!is_valid_heap_pointer(field_value) || is_marked(field_value)
|| is_enqueued(field_value)) {
continue;
}
// if we came to this point it must be true that field_value is unmarked and not currently in queue
// thus, we maintain the invariant
queue_enqueue(&q_tail_iter, field_value);
}
2023-05-31 11:01:11 +02:00
}
}
2023-05-31 11:01:11 +02:00
void scan_extra_roots (void) {
for (int i = 0; i < extra_roots.current_free; ++i) {
// this dereferencing is safe since runtime is pushing correct pointers into extra_roots
mark(*extra_roots.roots[i]);
}
}
#ifndef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
void scan_global_area (void) {
// __start_custom_data is pointing to beginning of global area, thus all dereferencings are safe
for (size_t *ptr = (size_t *)&__start_custom_data; ptr < (size_t *)&__stop_custom_data; ++ptr) {
mark(*(void **)ptr);
}
}
#endif
extern void gc_test_and_mark_root (size_t **root) {
fprintf(stderr, "stack addresses: [%p, %p)\n", (void*)__gc_stack_top + 4, (void*)__gc_stack_bottom);
if (is_valid_pointer(*root) && !is_valid_heap_pointer(*root)) {
fprintf(stderr, "Found weird pointer on the stack by address %p, value is %p (stack starts at %p, ends at %p)\n", root, *root, (void*)__gc_stack_top + 4, (void*)__gc_stack_bottom);
} else {
if (is_valid_pointer(*root)) {
fprintf(stderr, "Object that is supposed to be on the heap on the stack by address %p, value is %p\n", root, *root);
} else {
fprintf(stderr, "Value on the stack by address %p, value is %d\n", root, UNBOX(*root));
}
}
mark((void *)*root);
}
2023-05-31 11:01:11 +02:00
extern void __init (void) {
signal(SIGSEGV, handler);
size_t space_size = INIT_HEAP_SIZE * sizeof(size_t);
2023-05-31 11:01:11 +02:00
srandom(time(NULL));
2023-05-31 11:01:11 +02:00
heap.begin = mmap(
NULL, space_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_32BIT, -1, 0);
if (heap.begin == MAP_FAILED) {
perror("ERROR: __init: mmap failed\n");
exit(1);
}
heap.end = heap.begin + INIT_HEAP_SIZE;
heap.size = INIT_HEAP_SIZE;
heap.current = heap.begin;
clear_extra_roots();
}
2023-05-31 11:01:11 +02:00
extern void __shutdown (void) {
munmap(heap.begin, heap.size);
#ifdef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
cur_id = 0;
#endif
2023-05-31 11:01:11 +02:00
heap.begin = NULL;
heap.end = NULL;
heap.size = 0;
heap.current = NULL;
__gc_stack_top = 0;
__gc_stack_bottom = 0;
}
2023-05-31 11:01:11 +02:00
void clear_extra_roots (void) { extra_roots.current_free = 0; }
2023-05-31 11:01:11 +02:00
void push_extra_root (void **p) {
if (extra_roots.current_free >= MAX_EXTRA_ROOTS_NUMBER) {
perror("ERROR: push_extra_roots: extra_roots_pool overflow\n");
2023-05-31 11:01:11 +02:00
exit(1);
}
extra_roots.roots[extra_roots.current_free] = p;
extra_roots.current_free++;
}
2023-05-31 11:01:11 +02:00
void pop_extra_root (void **p) {
if (extra_roots.current_free == 0) {
perror("ERROR: pop_extra_root: extra_roots are empty\n");
2023-05-31 11:01:11 +02:00
exit(1);
}
extra_roots.current_free--;
if (extra_roots.roots[extra_roots.current_free] != p) {
perror("ERROR: pop_extra_root: stack invariant violation\n");
2023-05-31 11:01:11 +02:00
exit(1);
}
}
/* Functions for tests */
#ifdef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
size_t objects_snapshot (int *object_ids_buf, size_t object_ids_buf_size) {
size_t *ids_ptr = (size_t *)object_ids_buf;
size_t i = 0;
for (heap_iterator it = heap_begin_iterator();
!heap_is_done_iterator(&it) && i < object_ids_buf_size;
heap_next_obj_iterator(&it), ++i) {
void *header_ptr = it.current;
data *d = TO_DATA(get_object_content_ptr(header_ptr));
ids_ptr[i] = d->id;
}
return i;
}
extern char *de_hash (int);
void dump_heap () {
size_t i = 0;
for (heap_iterator it = heap_begin_iterator(); !heap_is_done_iterator(&it);
heap_next_obj_iterator(&it), ++i) {
void *header_ptr = it.current;
void *content_ptr = get_object_content_ptr(header_ptr);
data *d = TO_DATA(content_ptr);
lama_type t = get_type_header_ptr(header_ptr);
switch (t) {
case ARRAY: fprintf(stderr, "of kind ARRAY\n"); break;
case CLOSURE: fprintf(stderr, "of kind CLOSURE\n"); break;
case STRING: fprintf(stderr, "of kind STRING\n"); break;
case SEXP:
fprintf(stderr, "of kind SEXP with tag %s\n", de_hash(TO_SEXP(content_ptr)->tag));
break;
}
2023-05-31 11:01:11 +02:00
}
}
2023-05-31 11:01:11 +02:00
void set_stack (size_t stack_top, size_t stack_bottom) {
__gc_stack_top = stack_top;
__gc_stack_bottom = stack_bottom;
}
2023-05-31 11:01:11 +02:00
void set_extra_roots (size_t extra_roots_size, void **extra_roots_ptr) {
memcpy(extra_roots.roots, extra_roots_ptr, MIN(sizeof(extra_roots.roots), extra_roots_size));
clear_extra_roots();
}
#endif
/* Utility functions */
2023-05-31 11:01:11 +02:00
size_t get_forward_address (void *obj) {
data *d = TO_DATA(obj);
return GET_FORWARD_ADDRESS(d->forward_address);
}
2023-05-31 11:01:11 +02:00
void set_forward_address (void *obj, size_t addr) {
data *d = TO_DATA(obj);
SET_FORWARD_ADDRESS(d->forward_address, addr);
}
2023-05-31 11:01:11 +02:00
bool is_marked (void *obj) {
data *d = TO_DATA(obj);
int mark_bit = GET_MARK_BIT(d->forward_address);
return mark_bit;
}
2023-05-31 11:01:11 +02:00
void mark_object (void *obj) {
data *d = TO_DATA(obj);
SET_MARK_BIT(d->forward_address);
}
2023-05-31 11:01:11 +02:00
void unmark_object (void *obj) {
data *d = TO_DATA(obj);
RESET_MARK_BIT(d->forward_address);
}
2023-05-31 11:01:11 +02:00
bool is_enqueued (void *obj) {
data *d = TO_DATA(obj);
return IS_ENQUEUED(d->forward_address) != 0;
}
2023-05-31 11:01:11 +02:00
void make_enqueued (void *obj) {
data *d = TO_DATA(obj);
MAKE_ENQUEUED(d->forward_address);
}
2023-05-31 11:01:11 +02:00
void make_dequeued (void *obj) {
data *d = TO_DATA(obj);
MAKE_DEQUEUED(d->forward_address);
}
2023-05-31 11:01:11 +02:00
heap_iterator heap_begin_iterator () {
heap_iterator it = {.current = heap.begin};
return it;
}
2023-05-31 11:01:11 +02:00
void heap_next_obj_iterator (heap_iterator *it) {
void *ptr = it->current;
size_t obj_size = obj_size_header_ptr(ptr);
// make sure we take alignment into consideration
obj_size = BYTES_TO_WORDS(obj_size);
it->current += obj_size;
}
2023-05-31 11:01:11 +02:00
bool heap_is_done_iterator (heap_iterator *it) { return it->current >= heap.current; }
2023-05-31 11:01:11 +02:00
lama_type get_type_row_ptr (void *ptr) {
data *data_ptr = TO_DATA(ptr);
return get_type_header_ptr(data_ptr);
}
2023-05-31 11:01:11 +02:00
lama_type get_type_header_ptr (void *ptr) {
int *header = (int *)ptr;
switch (TAG(*header)) {
case ARRAY_TAG: return ARRAY;
case STRING_TAG: return STRING;
case CLOSURE_TAG: return CLOSURE;
case SEXP_TAG: return SEXP;
default: {
#ifdef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
fprintf(stderr, "ERROR: get_type_header_ptr: unknown object header, cur_id=%d", cur_id);
raise(SIGINT); // only for debug purposes
#else
fprintf(
stderr,
"ERROR: get_type_header_ptr: unknown object header, ptr is %p, tag %i, heap size is %d\n",
ptr,
TAG(*header),
heap.size);
#endif
2023-05-31 11:01:11 +02:00
exit(1);
}
2023-05-31 11:01:11 +02:00
}
}
2023-05-31 11:01:11 +02:00
size_t obj_size_row_ptr (void *ptr) {
data *data_ptr = TO_DATA(ptr);
return obj_size_header_ptr(data_ptr);
}
2023-05-31 11:01:11 +02:00
size_t obj_size_header_ptr (void *ptr) {
int len = LEN(*(int *)ptr);
switch (get_type_header_ptr(ptr)) {
case ARRAY: return array_size(len);
case STRING: return string_size(len);
case CLOSURE: return closure_size(len);
case SEXP: return sexp_size(len);
default: {
#ifdef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
fprintf(stderr, "ERROR: obj_size_header_ptr: unknown object header, cur_id=%d", cur_id);
raise(SIGINT); // only for debug purposes
#else
perror("ERROR: obj_size_header_ptr: unknown object header\n");
#endif
2023-05-31 11:01:11 +02:00
exit(1);
}
2023-05-31 11:01:11 +02:00
}
}
2023-05-31 11:01:11 +02:00
size_t array_size (size_t sz) { return get_header_size(ARRAY) + MEMBER_SIZE * sz; }
2023-05-31 11:01:11 +02:00
size_t string_size (size_t len) {
// string should be null terminated
return get_header_size(STRING) + len + 1;
}
2023-05-31 11:01:11 +02:00
size_t closure_size (size_t sz) { return get_header_size(CLOSURE) + MEMBER_SIZE * sz; }
2023-05-31 11:01:11 +02:00
size_t sexp_size (size_t members) { return get_header_size(SEXP) + MEMBER_SIZE * members; }
2023-05-31 11:01:11 +02:00
obj_field_iterator field_begin_iterator (void *obj) {
lama_type type = get_type_header_ptr(obj);
obj_field_iterator it = {.type = type, .obj_ptr = obj, .cur_field = get_object_content_ptr(obj)};
// since string doesn't have any actual fields we set cur_field to the end of object
if (type == STRING) { it.cur_field = get_end_of_obj(it.obj_ptr); }
// skip first member which is basically pointer to the code
if (type == CLOSURE) { it.cur_field += MEMBER_SIZE; }
return it;
}
2023-05-31 11:01:11 +02:00
obj_field_iterator ptr_field_begin_iterator (void *obj) {
obj_field_iterator it = field_begin_iterator(obj);
// corner case when obj has no fields
if (field_is_done_iterator(&it)) { return it; }
if (is_valid_pointer(*(size_t **)it.cur_field)) { return it; }
obj_next_ptr_field_iterator(&it);
return it;
}
2023-05-31 11:01:11 +02:00
void obj_next_field_iterator (obj_field_iterator *it) { it->cur_field += MEMBER_SIZE; }
2023-05-31 11:01:11 +02:00
void obj_next_ptr_field_iterator (obj_field_iterator *it) {
do {
obj_next_field_iterator(it);
} while (!field_is_done_iterator(it) && !is_valid_pointer(*(size_t **)it->cur_field));
}
2023-05-31 11:01:11 +02:00
bool field_is_done_iterator (obj_field_iterator *it) {
return it->cur_field >= get_end_of_obj(it->obj_ptr);
}
void *get_obj_header_ptr (void *ptr) {
lama_type type = get_type_row_ptr(ptr);
return ptr - get_header_size(type);
}
2023-05-31 11:01:11 +02:00
void *get_object_content_ptr (void *header_ptr) {
lama_type type = get_type_header_ptr(header_ptr);
return header_ptr + get_header_size(type);
}
2023-05-31 11:01:11 +02:00
void *get_end_of_obj (void *header_ptr) { return header_ptr + obj_size_header_ptr(header_ptr); }
2023-05-31 11:01:11 +02:00
size_t get_header_size (lama_type type) {
switch (type) {
case STRING:
case CLOSURE:
case ARRAY: return DATA_HEADER_SZ;
case SEXP: return SEXP_ONLY_HEADER_SZ + DATA_HEADER_SZ;
default: perror("ERROR: get_header_size: unknown object type\n");
#ifdef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
raise(SIGINT); // only for debug purposes
#endif
2023-05-31 11:01:11 +02:00
exit(1);
}
}
2023-05-31 11:01:11 +02:00
void *alloc_string (int len) {
data *obj = alloc(string_size(len));
obj->data_header = STRING_TAG | (len << 3);
#ifdef DEBUG_VERSION
2023-05-31 11:01:11 +02:00
obj->id = cur_id;
#endif
2023-05-31 11:01:11 +02:00
obj->forward_address = 0;
return obj;
}
2023-05-31 11:01:11 +02:00
void *alloc_array (int len) {
data *obj = alloc(array_size(len));
obj->data_header = ARRAY_TAG | (len << 3);
#ifdef FULL_INVARIANT_CHECKS
2023-05-31 11:01:11 +02:00
obj->id = cur_id;
#endif
2023-05-31 11:01:11 +02:00
obj->forward_address = 0;
return obj;
}
2023-05-31 11:01:11 +02:00
void *alloc_sexp (int members) {
sexp *obj = alloc(sexp_size(members));
obj->sexp_header = obj->contents.data_header = SEXP_TAG | (members << 3);
#ifdef FULL_INVARIANT_CHECKS
2023-05-31 11:01:11 +02:00
obj->contents.id = cur_id;
#endif
2023-05-31 11:01:11 +02:00
obj->contents.forward_address = 0;
obj->tag = 0;
return obj;
}
2023-05-31 11:01:11 +02:00
void *alloc_closure (int captured) {
data *obj = alloc(closure_size(captured));
obj->data_header = CLOSURE_TAG | (captured << 3);
#ifdef FULL_INVARIANT_CHECKS
2023-05-31 11:01:11 +02:00
obj->id = cur_id;
#endif
2023-05-31 11:01:11 +02:00
obj->forward_address = 0;
return obj;
}