move to runtime

This commit is contained in:
ProgramSnail 2024-10-31 21:08:48 +03:00
parent 6c39c65076
commit 26a42d4c81
21 changed files with 477 additions and 1879 deletions

3
byterun/.gitignore vendored
View file

@ -5,6 +5,7 @@ build/
.cache/ .cache/
compile_commands.json compile_commands.json
.cache/
*.a *.a
*.o *.o
byterun

View file

@ -1,10 +1,7 @@
FLAGS=-m32 -g2 -fstack-protector-all FLAGS=-m32 -g2 -fstack-protector-all
all: parser.o all: src/cli.c src/parser.c src/interpreter.c src/utils.c src/types.c src/virt_stack.c
$(CC) $(FLAGS) -o byterun parser.o ../runtime/runtime.a $(CC) $(FLAGS) -o byterun -Iinclude/ src/utils.c src/parser.c src/virt_stack.c src/interpreter.c src/cli.c ../runtime/runtime.a
interpreter.o: src/parser.c
$(CC) $(FLAGS) -Iinclude/ -g -c src/parser.c
clean: clean:
$(RM) *.a *.o *~ byterun $(RM) *.a *.o *~ byterun

View file

@ -1,216 +0,0 @@
#pragma once
#include <stdio.h>
#include "operations.h"
inline void f_read(struct State *s) {
int x = 0;
printf("> ");
scanf("%i", &x);
s_put_i(s, x);
}
inline void f_write(struct State *s) {
int x = s_take_i(s);
printf("%i", x);
}
inline void f_length(struct State *s) {
union VarT *x = s_take_var(s);
uint32_t type = dh_type(x->nil.data_header);
if (type == ARRAY_T || type == STR_T) {
s_put_i(s, dh_param(x->array.data_header));
} else if (type == STR_T) {
s_put_i(s, strlen(x->str.value));
} else { // TODO: lists ??
failure("no length func for type %ui", type);
}
}
// TODO
inline size_t str_sz(union VarT *var) {
switch (dh_type(var->nil.data_header)) {
case NIL_T: // <nil>
return strlen("<nil>");
case INT_T: // int
return snprintf(nullptr, 0, "%d", var->int_t.value);
case BOX_T: // "<box>:..."
return strlen("<box>") + (var->box.value != NULL
? str_sz((union VarT *)&var->box.value) + 1
: 0);
case STR_T: // "str"
return strlen(var->str.value);
case CLOJURE_T: // <clojure> // TODO
return strlen("<clojure>");
break;
case ARRAY_T: { // [a_1 a_2 a_3 ... a_n]
size_t sz = 0;
if (var->array.values != NULL) {
for (size_t i = 0; i < dh_param(var->array.data_header); ++i) {
sz += str_sz((union VarT *)var->array.values[i]) + 1;
}
--sz; // extra space
}
return sz + 2; // '[', ']'
}
case SEXP_T: { // tag:{a_1 a_2 ...}
size_t sz = 0;
if (var->sexp.tag != NULL) {
sz += strlen(var->sexp.tag) + 1; // tag and ':'
}
if (var->sexp.values != NULL) {
for (size_t i = 0; i < dh_param(var->sexp.data_header); ++i) {
sz += str_sz((union VarT *)var->sexp.values[i]) + 1;
}
--sz; // extra space
}
return sz + 2; // '{', '}'
}
case FUN_T: // <fun>
return strlen("<fun>");
}
}
// TODO
inline char *to_str(union VarT *var, char *str, size_t max_sz) {
str[0] = 0;
switch (dh_type(var->nil.data_header)) {
case NIL_T:
strcat(str, "<nil>");
break;
case INT_T:
snprintf(str, max_sz, "%d", var->int_t.value);
break;
case BOX_T:
strcat(str, "<box>");
if (var->box.value != NULL) {
strcat(str, ":");
str += strlen(str);
str = to_str((union VarT *)&var->box.value, str, max_sz);
}
break;
case STR_T:
strcat(str, "\"");
strcat(str, var->str.value);
strcat(str, "\"");
break;
case CLOJURE_T: // TODO
strcat(str, "<clojure>");
break;
case ARRAY_T:
strcat(str, "[");
++str;
for (size_t i = 0; i < dh_param(var->array.data_header); ++i) {
str = to_str((union VarT *)var->array.values[i], str, max_sz);
strcat(str, " ");
++str;
}
strcat(str, "]");
break;
case SEXP_T:
if (var->sexp.tag != NULL) {
strcat(str, var->sexp.tag);
strcat(str, ":");
}
strcat(str, "{");
str += strlen(str);
for (size_t i = 0; i < dh_param(var->sexp.data_header); ++i) {
str = to_str((union VarT *)var->sexp.values[i], str, max_sz);
strcat(str, " ");
++str;
}
strcat(str, "}");
break;
case FUN_T:
strcat(str, "<fun>");
break;
}
return str + strlen(str);
}
inline void f_string(struct State *s) {
union VarT *var = s_take_var(s);
size_t var_str_sz = str_sz(var);
char *var_str = (char *)malloc((var_str_sz + 1) * sizeof(char));
to_str(var, var_str, var_str_sz);
s_put_str(s, var_str);
free_var_ptr(var);
}
inline void f_array(struct State *s, int sz) { s_put_array(s, sz); }
inline void f_binop(struct State *s, const char *opr) {
size_t len = strlen(opr);
int y = s_take_i(s);
int x = s_take_i(s);
int z = 0;
if (len < 1) {
failure("BINOP: empty operation");
}
switch (opr[0]) {
case '+':
z = x + y;
break;
case '-':
z = x - y;
break;
case '*':
z = x * y;
break;
case '/':
if (y == 0) {
failure("BINOP: can't divide by zero");
}
z = x / y;
break;
case '%':
if (y == 0) {
failure("BINOP: can't take by mod zero");
}
z = x % y;
break;
case '<':
if (len == 1) { // <
z = x < y;
} else { // <=
z = x <= y;
}
break;
case '>':
if (len == 1) { // >
z = x > y;
} else { // >=
z = x >= y;
}
break;
case '=': // ==
z = x == y;
break;
case '!':
if (len == 1) {
failure("BINOP: '!...' opr len is 1");
}
if (opr[1] == '=') { // !=
z = x != y;
} else { // !!
z = x || y;
}
break;
case '&': // &&
z = x && y;
break;
default:
failure("BINOP: unknown operation");
}
s_put_i(s, z);
}

View file

@ -1,251 +0,0 @@
// ============================================================================
// GC
// ============================================================================
// This is an implementation of a compactifying garbage collection algorithm.
// GC algorithm itself consists of two major stages:
// 1. Marking roots
// 2. Compacting stage
// Compacting is implemented in a very similar fashion to LISP2 algorithm,
// which is well-known.
// Most important pieces of code to discover to understand how everything works:
// - void *gc_alloc (size_t): this function is basically called whenever we are
// not able to allocate memory on the existing heap via simple bump allocator.
// - mark_phase(): this function will tell you everything you need to know
// about marking. I would also recommend to pay attention to the fact that
// marking is implemented without usage of any additional memory. Already
// allocated space is sufficient (for details see 'void mark (void *obj)').
// - void compact_phase (size_t additional_size): the whole compaction phase
// can be understood by looking at this piece of code plus couple of other
// functions used in there. It is basically an implementation of LISP2.
#ifndef __LAMA_GC__
#define __LAMA_GC__
#include "runtime_common.h"
#define GET_MARK_BIT(x) (((int)(x)) & 1)
#define SET_MARK_BIT(x) (x = (((int)(x)) | 1))
#define IS_ENQUEUED(x) (((int)(x)) & 2)
#define MAKE_ENQUEUED(x) (x = (((int)(x)) | 2))
#define MAKE_DEQUEUED(x) (x = (((int)(x)) & (~2)))
#define RESET_MARK_BIT(x) (x = (((int)(x)) & (~1)))
// since last 2 bits are used for mark-bit and enqueued-bit and due to correct
// alignment we can expect that last 2 bits don't influence address (they
// should always be zero)
#define GET_FORWARD_ADDRESS(x) (((size_t)(x)) & (~3))
// take the last two bits as they are and make all others zero
#define SET_FORWARD_ADDRESS(x, addr) (x = ((x & 3) | ((int)(addr))))
// if heap is full after gc shows in how many times it has to be extended
#define EXTRA_ROOM_HEAP_COEFFICIENT 2
#ifdef DEBUG_VERSION
# define MINIMUM_HEAP_CAPACITY (8)
#else
# define MINIMUM_HEAP_CAPACITY (1 << 2)
#endif
#include <stdbool.h>
#include <stddef.h>
typedef enum { ARRAY, CLOSURE, STRING, SEXP } lama_type;
typedef struct {
size_t *current;
} heap_iterator;
typedef struct {
lama_type type; // holds type of object, which fields we are iterating over
void *obj_ptr; // place to store a pointer to the object header
void *cur_field;
} obj_field_iterator;
// Memory pool for linear memory allocation
typedef struct {
size_t *begin;
size_t *end;
size_t *current;
size_t size;
} memory_chunk;
// the only GC-related function that should be exposed, others are useful for tests and internal implementation
// allocates object of the given size on the heap
void *alloc(size_t);
// takes number of words as a parameter
void *gc_alloc(size_t);
// takes number of words as a parameter
void *gc_alloc_on_existing_heap(size_t);
// specific for mark-and-compact_phase gc
void mark (void *obj);
void mark_phase (void);
// marks each pointer from extra roots
void scan_extra_roots (void);
#ifdef LAMA_ENV
// marks each valid pointer from global area
void scan_global_area (void);
#endif
// takes number of words that are required to be allocated somewhere on the heap
void compact_phase (size_t additional_size);
// specific for Lisp-2 algorithm
size_t compute_locations ();
void update_references (memory_chunk *);
void physically_relocate (memory_chunk *);
// ============================================================================
// GC extra roots
// ============================================================================
// Lama's program stack is continuous, i.e. it never interleaves with runtime
// function's activation records. But some valid Lama's pointers can escape
// into runtime. Those values (theirs stack addresses) has to be registered in
// an auxiliary data structure called `extra_roots_pool`.
// extra_roots_pool is a simple LIFO stack. During `pop` it compares that pop's
// argument is equal to the current stack top.
#define MAX_EXTRA_ROOTS_NUMBER 32
typedef struct {
int current_free;
void **roots[MAX_EXTRA_ROOTS_NUMBER];
} extra_roots_pool;
void clear_extra_roots (void);
void push_extra_root (void **p);
void pop_extra_root (void **p);
// ============================================================================
// Implemented in GASM: see gc_runtime.s
// ============================================================================
// MANDATORY TO CALL BEFORE ANY INTERACTION WITH GC (apart from cases where we
// are working with virtual stack as happens in tests)
void __gc_init (void);
// should be called before interaction with GC in case of using in tests with
// virtual stack, otherwise it is automatically invoked by `__gc_init`
void __init (void);
// mostly useful for tests but basically you want to call this in case you want
// to deallocate all object allocated via GC
extern void __shutdown (void);
// ============================================================================
// invoked from GASM: see gc_runtime.s
// ============================================================================
extern void gc_test_and_mark_root (size_t **root);
bool is_valid_heap_pointer (const size_t *);
static inline bool is_valid_pointer (const size_t *);
// ============================================================================
// Auxiliary functions for tests
// ============================================================================
#if defined(DEBUG_VERSION)
// makes a snapshot of current objects in heap (both alive and dead), writes these ids to object_ids_buf,
// returns number of ids dumped
// object_ids_buf is pointer to area preallocated by user for dumping ids of objects in heap
// object_ids_buf_size is in WORDS, NOT BYTES
size_t objects_snapshot (int *object_ids_buf, size_t object_ids_buf_size);
#endif
#ifdef DEBUG_VERSION
// essential function to mock program stack
void set_stack (size_t stack_top, size_t stack_bottom);
// function to mock extra roots (Lama specific)
void set_extra_roots (size_t extra_roots_size, void **extra_roots_ptr);
#endif
// ============================================================================
// Utility functions
// ============================================================================
// accepts pointer to the start of the region and to the end of the region
// scans it and if it meets a pointer, it should be modified in according to forward address
void scan_and_fix_region (memory_chunk *old_heap, void *start, void *end);
// takes a pointer to an object content as an argument, returns forwarding address
size_t get_forward_address (void *obj);
// takes a pointer to an object content as an argument, sets forwarding address to value 'addr'
void set_forward_address (void *obj, size_t addr);
// takes a pointer to an object content as an argument, returns whether this object was marked as live
bool is_marked (void *obj);
// takes a pointer to an object content as an argument, marks the object as live
void mark_object (void *obj);
// takes a pointer to an object content as an argument, marks the object as dead
void unmark_object (void *obj);
// takes a pointer to an object content as an argument, returns whether this object was enqueued to the queue (which is used in mark phase)
bool is_enqueued (void *obj);
// takes a pointer to an object content as an argument, marks object as enqueued
void make_enqueued (void *obj);
// takes a pointer to an object content as an argument, unmarks object as enqueued
void make_dequeued (void *obj);
// returns iterator to an object with the lowest address
heap_iterator heap_begin_iterator ();
void heap_next_obj_iterator (heap_iterator *it);
bool heap_is_done_iterator (heap_iterator *it);
// returns correct type when pointer to actual data is passed (header is excluded)
lama_type get_type_row_ptr (void *ptr);
// returns correct type when pointer to an object header is passed
lama_type get_type_header_ptr (void *ptr);
// returns correct object size (together with header) of an object, ptr is pointer to an actual data is passed (header is excluded)
size_t obj_size_row_ptr (void *ptr);
// returns correct object size (together with header) of an object, ptr is pointer to an object header
size_t obj_size_header_ptr (void *ptr);
// returns total padding size that we need to store given object type
size_t get_header_size (lama_type type);
// returns number of bytes that are required to allocate array with 'sz' elements (header included)
size_t array_size (size_t sz);
// returns number of bytes that are required to allocate string of length 'l' (header included)
size_t string_size (size_t len);
// returns number of bytes that are required to allocate closure with 'sz-1' captured values (header included)
size_t closure_size (size_t sz);
// returns number of bytes that are required to allocate s-expression with 'members' fields (header included)
size_t sexp_size (size_t members);
// returns an iterator over object fields, obj is ptr to object header
// (in case of s-exp, it is mandatory that obj ptr is very beginning of the object,
// considering that now we store two versions of header in there)
obj_field_iterator field_begin_iterator (void *obj);
// returns an iterator over object fields which are actual pointers, obj is ptr to object header
// (in case of s-exp, it is mandatory that obj ptr is very beginning of the object,
// considering that now we store two versions of header in there)
obj_field_iterator ptr_field_begin_iterator (void *obj);
// moves the iterator to next object field
void obj_next_field_iterator (obj_field_iterator *it);
// moves the iterator to the next object field which is an actual pointer
void obj_next_ptr_field_iterator (obj_field_iterator *it);
// returns if we are done iterating over fields of the object
bool field_is_done_iterator (obj_field_iterator *it);
// ptr is pointer to the actual object content, returns pointer to the very beginning of the object (header)
void *get_obj_header_ptr (void *ptr);
void *get_object_content_ptr (void *header_ptr);
void *get_end_of_obj (void *header_ptr);
void *alloc_string (int len);
void *alloc_array (int len);
void *alloc_sexp (int members);
void *alloc_closure (int captured);
#endif

View file

@ -1,298 +0,0 @@
#pragma once
#include "gc.h"
#include "runtime.h"
#include "types.h"
#include "stdlib.h"
// ------ general ------
inline void free_var_ptr(union VarT *var);
inline void free_var(union VarT var) {
switch (dh_type(var.nil.data_header)) {
case NIL_T:
break;
case INT_T:
break;
case BOX_T:
// pointer, do not free original object
break;
case STR_T:
if (dh_param(var.str.data_header)) { // not const string
// free(var.str.value); // FIXME
}
break;
case CLOJURE_T:
// TODO
break;
case ARRAY_T:
// dh param is size
for (size_t i = 0; i < dh_param(var.array.data_header); ++i) {
free_var_ptr(to_var(var.array.values[i]));
}
// free(var.array.values); // FIXME
break;
case SEXP_T:
// tag is const string, no need to free
if (var.sexp.values != NULL) {
for (size_t i = 0; i < dh_param(var.sexp.data_header); ++i) {
free_var_ptr(to_var(var.sexp.values[i]));
}
// free(var.sexp.values); // FIXME
}
break;
case FUN_T:
break;
}
}
// TODO: use gc
inline void free_var_ptr(union VarT *var) {
free_var(*var);
// free((void *)var); // FIXME
}
//
inline struct NilT clear_var() {
struct NilT var = {.data_header = NIL_T};
return var;
}
// ------ put on stack ---
inline void s_put_ptr(struct State *s, char *val) { // any var
*s->vp = (struct NilT *)val;
++s->vp;
}
inline void s_put_var_ptr(struct State *s, struct NilT **val) { // any var
*s->vp = (struct NilT *)val;
++s->vp;
}
inline void s_put_var(struct State *s, struct NilT *val) { // any var
*s->vp = val;
++s->vp;
}
inline void s_put_nil(struct State *s) {
struct NilT *var = (struct NilT *)alloc(sizeof(struct NilT));
var->data_header = NIL_T; // no param
s_put_var(s, var);
}
inline void s_putn_nil(struct State *s, size_t n) {
for (size_t i = 0; i < n; ++i) {
s_put_nil(s);
}
}
inline void s_put_i(struct State *s, int val) {
struct IntT *var = (struct IntT *)alloc(sizeof(struct IntT));
var->data_header = INT_T; // no param
var->value = val;
s_put_var(s, (struct NilT *)var);
}
inline void s_put_box(struct State *s, struct NilT **val) {
struct BoxT *var = (struct BoxT *)alloc(sizeof(struct BoxT));
var->data_header = BOX_T; // no param
var->value = val;
s_put_var(s, (struct NilT *)var);
}
inline void s_put_const_str(struct State *s, const char *val) {
struct StrT *var = (struct StrT *)alloc(sizeof(struct StrT));
var->data_header = 0 & STR_T; // param - is const
var->value = val;
s_put_var(s, (struct NilT *)var);
}
inline void s_put_str(struct State *s, char *val) {
struct StrT *var = (struct StrT *)alloc(sizeof(struct StrT));
var->data_header = 1 & STR_T; // param - is not const
var->value = val;
s_put_var(s, (struct NilT *)var);
}
inline void s_put_array(struct State *s, int sz) {
struct ArrayT *var = (struct ArrayT *)alloc(sizeof(struct ArrayT));
if (sz < 0) {
failure("array size < 0");
}
if (sz > MAX_ARRAY_SIZE) {
failure("too big array size");
}
var->data_header = sz & ARRAY_T;
var->values = (struct NilT **)alloc(sizeof(struct NilT *) * sz);
for (size_t i = 0; i < sz; ++i) {
var->values[i] = NULL;
}
s_put_var(s, (struct NilT *)var);
}
inline union VarT *s_take_var(struct State *s);
inline void s_put_sexp(struct State *s, const char *tag, int sz) {
struct SExpT *var = (struct SExpT *)alloc(sizeof(struct SExpT));
if (sz < 0) {
failure("array size < 0");
}
if (sz > MAX_ARRAY_SIZE) {
failure("too big array size");
}
var->data_header = sz & SEXP_T;
var->values = (struct NilT **)alloc(sizeof(struct NilT *) * sz);
var->tag = tag;
for (size_t i = 0; i < sz; ++i) {
var->values[i] = (struct NilT *)s_take_var(s);
}
s_put_var(s, (struct NilT *)var);
}
// inline void s_put_empty_list(struct State *s, struct NilT *first_elem) {
// struct ListT *var = (ListT *)alloc(sizeof(ListT));
// var->data_header = LIST_T; // no param
// var->value = first_elem;
// var->next = NULL;
// s_put_var(s, (struct NilT *)var);
// *first_elem = clear_var();
// }
// ------ take from stack ------
inline union VarT *s_take_var(struct State *s) {
if (s->vp == s->stack || (s->fp != NULL && s->vp == s->fp->end)) {
failure("take: no var");
}
--s->vp;
union VarT *ret = (union VarT *)*s->vp;
*s->vp = NULL; // clear top var
return ret;
}
inline int s_take_i(struct State *s) {
union VarT *v = s_take_var(s);
if (dh_type(v->nil.data_header) != INT_T) {
failure("take int: not int");
}
return v->int_t.value;
}
inline void s_drop_var(struct State *s) {
if (s->vp == s->stack || (s->fp != NULL && s->vp == s->fp->end)) {
failure("drop: no var");
}
--s->vp;
free_var_ptr((union VarT *)*s->vp);
*s->vp = NULL;
}
inline void s_dropn_var(struct State *s, size_t n) {
for (size_t i = 0; i < n; ++i) {
s_drop_var(s);
}
}
// ------ functions ------
// |> param_0 ... param_n | frame[ ret rp prev_fp &params &locals &end ]
// |> local_0 ... local_m |> | ...
//
// where |> defines corresponding frame pointer, | is stack pointer location
// before / after new frame added
inline void s_enter_f(struct State *s, char *func_ip, size_t params_sz,
size_t locals_sz) {
if (params_sz > s->vp - s->stack ||
(s->fp != NULL && params_sz > s->vp - s->fp->end)) {
failure("not enough parameters in stack");
}
size_t frame_sz_in_ptr = sizeof(struct Frame) / sizeof(void *);
struct Frame frame = {
.ret = NULL, // field in frame itself
.rp = s->ip,
.prev_fp = s->fp,
.params = s->vp - params_sz,
.locals = s->vp + frame_sz_in_ptr,
.end = s->vp + frame_sz_in_ptr + locals_sz,
};
// put frame on stack
s->fp = (struct Frame *)s->vp;
(*s->fp) = frame;
// update stack pointer
s->vp = frame.end;
// go to function body
s->ip = func_ip;
}
inline void s_exit_f(struct State *s) {
if (s->fp == NULL) {
failure("exit: no func");
}
// drop stack entities and locals
s_dropn_var(s, s->vp - s->fp->locals);
// drop params
s->vp = (void **)s->fp;
s_dropn_var(s, s->vp - s->fp->params);
// s->vp = s->fp->params; // done automatically
// save ret_val;
if (s->fp->ret != NULL) {
(*s->vp) = s->fp->ret;
++s->vp;
}
s->ip = s->fp->rp;
s->fp = s->fp->prev_fp;
}
inline union VarT **var_by_category(struct State *s, enum VarCategory category,
int id) {
union VarT **var = NULL;
switch (category) {
case VAR_GLOBAL:
// TODO: FIXME
break;
case VAR_LOCAL:
if (s->fp == NULL) {
failure("can't read local outside of function");
}
if (id < 0) {
failure("can't read local: negative id %i", id);
}
if (frame_locals_sz(s->fp) <= id) {
failure("can't read local: too big id, %i >= %ul", frame_locals_sz(s->fp),
id);
}
var = (union VarT **)&s->fp->locals[id];
break;
case VAR_A:
// TODO
break;
case VAR_C:
// TODO
break;
}
return var;
}

View file

@ -2,26 +2,7 @@
#include <stdio.h> #include <stdio.h>
/* The unpacked representation of bytecode file */ #include "utils.h"
typedef struct {
char *string_ptr; /* A pointer to the beginning of the string table */
int *public_ptr; /* A pointer to the beginning of publics table */
char *code_ptr; /* A pointer to the bytecode itself */
int *global_ptr; /* A pointer to the global area */
int stringtab_size; /* The size (in bytes) of the string table */
int global_area_size; /* The size (in words) of global area */
int public_symbols_number; /* The number of public symbols */
char buffer[0];
} bytefile;
/* Gets a string from a string table by an index */
char *get_string(bytefile *f, int pos);
/* Gets a name for a public symbol */
char *get_public_name(bytefile *f, int i);
/* Gets an offset for a publie symbol */
int get_public_offset(bytefile *f, int i);
bytefile *read_file(char *fname); bytefile *read_file(char *fname);

View file

@ -1,29 +0,0 @@
#pragma once
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <regex.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <time.h>
#define WORD_SIZE (CHAR_BIT * sizeof(int))
inline void vfailure(char *s, va_list args) {
fprintf(stderr, "*** FAILURE: ");
vfprintf(stderr, s,
args); // vprintf (char *, va_list) <-> printf (char *, ...)
exit(255);
}
inline void failure(char *s, ...) {
va_list args;
va_start(args, s);
vfailure(s, args);
}

View file

@ -1,73 +0,0 @@
#ifndef __LAMA_RUNTIME_COMMON__
#define __LAMA_RUNTIME_COMMON__
#include <stddef.h>
// this flag makes GC behavior a bit different for testing purposes.
//#define DEBUG_VERSION
//#define FULL_INVARIANT_CHECKS
#define STRING_TAG 0x00000001
#define ARRAY_TAG 0x00000003
#define SEXP_TAG 0x00000005
#define CLOSURE_TAG 0x00000007
#define UNBOXED_TAG 0x00000009 // Not actually a data_header; used to return from LkindOf
#define LEN(x) ((x & 0xFFFFFFF8) >> 3)
#define TAG(x) (x & 0x00000007)
#define SEXP_ONLY_HEADER_SZ (sizeof(int))
#ifndef DEBUG_VERSION
# define DATA_HEADER_SZ (sizeof(size_t) + sizeof(int))
#else
# define DATA_HEADER_SZ (sizeof(size_t) + sizeof(size_t) + sizeof(int))
#endif
#define MEMBER_SIZE sizeof(int)
#define TO_DATA(x) ((data *)((char *)(x) - DATA_HEADER_SZ))
#define TO_SEXP(x) ((sexp *)((char *)(x) - DATA_HEADER_SZ))
#define UNBOXED(x) (((int)(x)) & 0x0001)
#define UNBOX(x) (((int)(x)) >> 1)
#define BOX(x) ((((int)(x)) << 1) | 0x0001)
#define BYTES_TO_WORDS(bytes) (((bytes) - 1) / sizeof(size_t) + 1)
#define WORDS_TO_BYTES(words) ((words) * sizeof(size_t))
// CAREFUL WITH DOUBLE EVALUATION!
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
typedef struct {
// store tag in the last three bits to understand what structure this is, other bits are filled with
// other utility info (i.e., size for array, number of fields for s-expression)
int data_header;
#ifdef DEBUG_VERSION
size_t id;
#endif
// last bit is used as MARK-BIT, the rest are used to store address where object should move
// last bit can be used because due to alignment we can assume that last two bits are always 0's
size_t forward_address;
char contents[0];
} data;
typedef struct {
// store tag in the last three bits to understand what structure this is, other bits are filled with
// other utility info (i.e., size for array, number of fields for s-expression)
int data_header;
#ifdef DEBUG_VERSION
size_t id;
#endif
// last bit is used as MARK-BIT, the rest are used to store address where object should move
// last bit can be used because due to alignment we can assume that last two bits are always 0's
size_t forward_address;
int tag;
int contents[0];
} sexp;
#endif

View file

@ -0,0 +1,168 @@
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <regex.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <time.h>
#include "../../runtime/runtime_common.h"
#define WORD_SIZE (CHAR_BIT * sizeof(int))
// ---
void *Bsexp(int n, ...);
int LtagHash(char *);
// Gets a raw data_header
int LkindOf(void *p);
// Compare s-exprs tags
int LcompareTags(void *p, void *q);
// Functional synonym for built-in operator ":";
void *Ls__Infix_58(void *p, void *q);
// Functional synonym for built-in operator "!!";
int Ls__Infix_3333(void *p, void *q);
// Functional synonym for built-in operator "&&";
int Ls__Infix_3838(void *p, void *q);
// Functional synonym for built-in operator "==";
int Ls__Infix_6161(void *p, void *q);
// Functional synonym for built-in operator "!=";
int Ls__Infix_3361(void *p, void *q);
// Functional synonym for built-in operator "<=";
int Ls__Infix_6061(void *p, void *q);
// Functional synonym for built-in operator "<";
int Ls__Infix_60(void *p, void *q);
// Functional synonym for built-in operator ">=";
int Ls__Infix_6261(void *p, void *q);
// Functional synonym for built-in operator ">";
int Ls__Infix_62(void *p, void *q);
// Functional synonym for built-in operator "+";
int Ls__Infix_43(void *p, void *q);
// Functional synonym for built-in operator "-";
int Ls__Infix_45(void *p, void *q);
// Functional synonym for built-in operator "*";
int Ls__Infix_42(void *p, void *q);
// Functional synonym for built-in operator "/";
int Ls__Infix_47(void *p, void *q);
// Functional synonym for built-in operator "%";
int Ls__Infix_37(void *p, void *q);
int Llength(void *p);
int LtagHash(char *s);
char *de_hash(int n);
int Luppercase(void *v);
int Llowercase(void *v);
int LmatchSubString(char *subj, char *patt, int pos);
void *Lsubstring(void *subj, int p, int l);
struct re_pattern_buffer *Lregexp(char *regexp);
int LregexpMatch(struct re_pattern_buffer *b, char *s, int pos);
void *Bstring(void *);
void *Lclone(void *p);
int inner_hash(int depth, unsigned acc, void *p);
void *LstringInt(char *b);
int Lhash(void *p);
int LflatCompare(void *p, void *q);
int Lcompare(void *p, void *q);
void *Belem(void *p, int i);
void *LmakeArray(int length);
void *LmakeString(int length);
void *Bstring(void *p);
void *Lstringcat(void *p);
void *Lstring(void *p);
void *Bclosure(int bn, void *entry, ...);
void *Barray(int bn, ...);
void *Bsexp(int bn, ...);
int Btag(void *d, int t, int n);
int get_tag(data *d);
int get_len(data *d);
int Barray_patt(void *d, int n);
int Bstring_patt(void *x, void *y);
int Bclosure_tag_patt(void *x);
int Bboxed_patt(void *x);
int Bunboxed_patt(void *x);
int Barray_tag_patt(void *x);
int Bstring_tag_patt(void *x);
int Bsexp_tag_patt(void *x);
void *Bsta(void *v, int i, void *x);
void Lfailure(char *s, ...);
void LprintfPerror(char *s, ...);
void Bmatch_failure(void *v, char *fname, int line, int col);
void * /*Lstrcat*/ Li__Infix_4343(void *a, void *b);
void *Lsprintf(char *fmt, ...);
void *LgetEnv(char *var);
int Lsystem(char *cmd);
void Lfprintf(FILE *f, char *s, ...);
void Lprintf(char *s, ...);
FILE *Lfopen(char *f, char *m);
void Lfclose(FILE *f);
void *LreadLine();
void *Lfread(char *fname);
void Lfwrite(char *fname, char *contents);
void *Lfexists(char *fname);
void *Lfst(void *v);
void *Lsnd(void *v);
void *Lhd(void *v);
void *Ltl(void *v);
/* Lread is an implementation of the "read" construct */
int Lread();
int Lbinoperror(void);
int Lbinoperror2(void);
/* Lwrite is an implementation of the "write" construct */
int Lwrite(int n);
int Lrandom(int n);
int Ltime();
void set_args(int argc, char *argv[]);

34
byterun/include/stack.h Normal file
View file

@ -0,0 +1,34 @@
#pragma once
#include "../../runtime/gc.h"
#include "runtime_externs.h"
#include "types.h"
#include "utils.h"
#include "stdlib.h"
void s_push(struct State *s, void *val);
void s_push_nil(struct State *s);
void s_pushn_nil(struct State *s, size_t n);
void *s_pop(struct State *s);
void s_popn(struct State *s, size_t n);
// ------ functions ------
// |> param_0 ... param_n | frame[ ret rp prev_fp &params &locals &end
// ]
// |> local_0 ... local_m |> | ...
//
// where |> defines corresponding frame pointer, | is stack pointer
// location before / after new frame added
void s_enter_f(struct State *s, char *func_ip, size_t params_sz,
size_t locals_sz);
void s_exit_f(struct State *s);
union VarT **var_by_category(struct State *s, enum VarCategory category,
int id);

View file

@ -1,7 +1,7 @@
#pragma once #pragma once
#include "../../runtime/runtime.h"
#include "parser.h" #include "parser.h"
#include "runtime.h"
#include <stdint.h> #include <stdint.h>
// ------ Var ------ // ------ Var ------
@ -52,7 +52,7 @@ struct ArrayT {
uint32_t data_header; uint32_t data_header;
struct NilT **values; struct NilT **values;
}; };
const size_t MAX_ARRAY_SIZE = 0x11111110; static const size_t MAX_ARRAY_SIZE = 0x11111110;
struct SExpT { struct SExpT {
uint32_t data_header; uint32_t data_header;
@ -78,17 +78,20 @@ union VarT {
}; };
// same to TAG in runtime // same to TAG in runtime
inline enum Type dh_type(int data_header) { static inline enum Type dh_type(int data_header) {
return (enum Type)(data_header & 0x00000007); return (enum Type)(data_header & 0x00000007);
} }
// same to LEN in runtime // same to LEN in runtime
inline int dh_param(int data_header) { return (data_header & 0xFFFFFFF8) >> 3; } static inline int dh_param(int data_header) {
return (data_header & 0xFFFFFFF8) >> 3;
}
inline union VarT *to_var(struct NilT *var) { return (union VarT *)var; } static inline union VarT *to_var(struct NilT *var) { return (union VarT *)var; }
// ------ Frame ------ // ------ Frame ------
// TODO: store boxed offsets instead
struct Frame { struct Frame {
struct NilT *ret; // store returned value struct NilT *ret; // store returned value
char *rp; // ret instruction pointer char *rp; // ret instruction pointer
@ -98,10 +101,10 @@ struct Frame {
void **end; // store locals void **end; // store locals
}; };
inline uint64_t frame_locals_sz(struct Frame *frame) { static inline uint64_t frame_locals_sz(struct Frame *frame) {
return frame->locals - frame->params; return frame->locals - frame->params;
} }
inline uint64_t frame_params_sz(struct Frame *frame) { static inline uint64_t frame_params_sz(struct Frame *frame) {
return frame->end - frame->locals; return frame->end - frame->locals;
} }
@ -114,7 +117,7 @@ union StackValue {
char *addr; char *addr;
}; };
// inline StackValue *to_sv(void *var) { return (StackValue *)var; } // static inline StackValue *to_sv(void *var) { return (StackValue *)var; }
struct State { struct State {
void **stack; // vaid** void **stack; // vaid**
@ -126,18 +129,18 @@ struct State {
}; };
struct State init_state(bytefile *bf); struct State init_state(bytefile *bf);
void destruct_state(struct State *state); void cleanup_state(struct State *state);
// ------ VarCategory ------ // ------ VarCategory ------
enum VarCategory { enum VarCategory {
VAR_GLOBAL = 0, VAR_GLOBAL = 0,
VAR_LOCAL = 1, VAR_LOCAL = 1,
VAR_A = 2, // TODO: ?? VAR_ARGUMENT = 2,
VAR_C = 3 // TODO: ?? VAR_C = 3 // TODO: constant ??
}; };
inline enum VarCategory to_var_category(uint8_t category) { static inline enum VarCategory to_var_category(uint8_t category) {
if (category > 3) { if (category > 3) {
failure("unexpected variable category"); failure("unexpected variable category");
} }

26
byterun/include/utils.h Normal file
View file

@ -0,0 +1,26 @@
#pragma once
#include <stdarg.h>
/* The unpacked representation of bytecode file */
typedef struct {
char *string_ptr; /* A pointer to the beginning of the string table */
int *public_ptr; /* A pointer to the beginning of publics table */
char *code_ptr; /* A pointer to the bytecode itself */
int *global_ptr; /* A pointer to the global area */
int stringtab_size; /* The size (in bytes) of the string table */
int global_area_size; /* The size (in words) of global area */
int public_symbols_number; /* The number of public symbols */
char buffer[0];
} bytefile;
/* Gets a string from a string table by an index */
char *get_string(bytefile *f, int pos);
/* Gets a name for a public symbol */
char *get_public_name(bytefile *f, int i);
/* Gets an offset for a public symbol */
int get_public_offset(bytefile *f, int i);
// ---

View file

@ -1,6 +1,7 @@
#include "interpreter.h" #include "interpreter.h"
#include "parser.h" #include "parser.h"
#include "runtime.h" #include "utils.h"
#include "../../runtime/runtime.h"
int main(int argc, char** argv) { int main(int argc, char** argv) {
if (argc < 2) { if (argc < 2) {
@ -11,7 +12,7 @@ int main(int argc, char** argv) {
} }
bytefile *f = read_file (argv[1]); bytefile *f = read_file(argv[1]);
run(f); run(f);
// dump_file (stdout, f); // dump_file (stdout, f);

View file

@ -1,922 +0,0 @@
#define _GNU_SOURCE 1
#include "gc.h"
#include "runtime_common.h"
#include <assert.h>
#include <execinfo.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
static const size_t INIT_HEAP_SIZE = MINIMUM_HEAP_CAPACITY;
#ifdef DEBUG_VERSION
size_t cur_id = 0;
#endif
static extra_roots_pool extra_roots;
size_t __gc_stack_top = 0, __gc_stack_bottom = 0;
#ifdef LAMA_ENV
extern const size_t __start_custom_data, __stop_custom_data;
#endif
#ifdef DEBUG_VERSION
memory_chunk heap;
#else
static memory_chunk heap;
#endif
#ifdef DEBUG_VERSION
void dump_heap ();
#endif
void handler (int sig) {
void *array[10];
int size;
// get void*'s for all entries on the stack
size = backtrace(array, 10);
fprintf(stderr, "heap size is %zu\n", heap.size);
backtrace_symbols_fd(array, size, STDERR_FILENO);
exit(1);
}
void *alloc (size_t size) {
#ifdef DEBUG_VERSION
++cur_id;
#endif
size_t bytes_sz = size;
size = BYTES_TO_WORDS(size);
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "allocation of size %zu words (%zu bytes): ", size, bytes_sz);
#endif
void *p = gc_alloc_on_existing_heap(size);
if (!p) {
// not enough place in the heap, need to perform GC cycle
p = gc_alloc(size);
}
return p;
}
#ifdef FULL_INVARIANT_CHECKS
// precondition: obj_content is a valid address pointing to the content of an object
static void print_object_info (FILE *f, void *obj_content) {
data *d = TO_DATA(obj_content);
size_t obj_tag = TAG(d->data_header);
size_t obj_id = d->id;
fprintf(f, "id %zu tag %zu | ", obj_id, obj_tag);
}
static void print_unboxed (FILE *f, int unboxed) { fprintf(f, "unboxed %zu | ", unboxed); }
static FILE *print_stack_content (char *filename) {
FILE *f = fopen(filename, "w+");
ftruncate(fileno(f), 0);
fprintf(f, "Stack content:\n");
for (size_t *stack_ptr = (size_t *)((void *)__gc_stack_top + 4);
stack_ptr < (size_t *)__gc_stack_bottom;
++stack_ptr) {
size_t value = *stack_ptr;
if (is_valid_heap_pointer((size_t *)value)) {
fprintf(f, "%p, ", (void *)value);
print_object_info(f, (void *)value);
} else {
print_unboxed(f, (int)value);
}
fprintf(f, "\n");
}
fprintf(f, "Stack content end.\n");
return f;
}
// precondition: obj_content is a valid address pointing to the content of an object
static void objects_dfs (FILE *f, void *obj_content) {
void *obj_header = get_obj_header_ptr(obj_content);
data *obj_data = TO_DATA(obj_content);
// internal mark-bit for this dfs, should be recovered by the caller
if ((obj_data->forward_address & 2) != 0) { return; }
// set this bit as 1
obj_data->forward_address |= 2;
fprintf(f, "object at addr %p: ", obj_content);
print_object_info(f, obj_content);
/*fprintf(f, "object id: %zu | ", obj_data->id);*/
// first cycle: print object's fields
for (obj_field_iterator field_it = ptr_field_begin_iterator(obj_header);
!field_is_done_iterator(&field_it);
obj_next_field_iterator(&field_it)) {
size_t field_value = *(size_t *)field_it.cur_field;
if (is_valid_heap_pointer((size_t *)field_value)) {
print_object_info(f, (void *)field_value);
/*fprintf(f, "%zu ", TO_DATA(field_value)->id);*/
} else {
print_unboxed(f, (int)field_value);
}
}
fprintf(f, "\n");
for (obj_field_iterator field_it = ptr_field_begin_iterator(obj_header);
!field_is_done_iterator(&field_it);
obj_next_field_iterator(&field_it)) {
size_t field_value = *(size_t *)field_it.cur_field;
if (is_valid_heap_pointer((size_t *)field_value)) { objects_dfs(f, (void *)field_value); }
}
}
FILE *print_objects_traversal (char *filename, bool marked) {
FILE *f = fopen(filename, "w+");
ftruncate(fileno(f), 0);
for (heap_iterator it = heap_begin_iterator(); !heap_is_done_iterator(&it);
heap_next_obj_iterator(&it)) {
void *obj_header = it.current;
data *obj_data = TO_DATA(get_object_content_ptr(obj_header));
if ((obj_data->forward_address & 1) == marked) {
objects_dfs(f, get_object_content_ptr(obj_header));
}
}
// resetting bit that represent mark-bit for this internal dfs-traversal
for (heap_iterator it = heap_begin_iterator(); !heap_is_done_iterator(&it);
heap_next_obj_iterator(&it)) {
void *obj_header = it.current;
data *obj_data = TO_DATA(get_object_content_ptr(obj_header));
obj_data->forward_address &= (~2);
}
fflush(f);
// print extra roots
for (int i = 0; i < extra_roots.current_free; i++) {
fprintf(f, "extra root %p %p: ", extra_roots.roots[i], *(size_t **)extra_roots.roots[i]);
}
fflush(f);
return f;
}
int files_cmp (FILE *f1, FILE *f2) {
int symbol1, symbol2;
int position = 0;
while (true) {
symbol1 = fgetc(f1);
symbol2 = fgetc(f2);
if (symbol1 == EOF && symbol2 == EOF) { return -1; }
if (symbol1 != symbol2) { return position; }
++position;
}
}
#endif
void *gc_alloc_on_existing_heap (size_t size) {
if (heap.current + size <= heap.end) {
void *p = (void *)heap.current;
heap.current += size;
memset(p, 0, size * sizeof(size_t));
return p;
}
return NULL;
}
void *gc_alloc (size_t size) {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "===============================GC cycle has started\n");
#endif
#ifdef FULL_INVARIANT_CHECKS
FILE *stack_before = print_stack_content("stack-dump-before-compaction");
FILE *heap_before = print_objects_traversal("before-mark", 0);
fclose(heap_before);
#endif
mark_phase();
#ifdef FULL_INVARIANT_CHECKS
FILE *heap_before_compaction = print_objects_traversal("after-mark", 1);
#endif
compact_phase(size);
#ifdef FULL_INVARIANT_CHECKS
FILE *stack_after = print_stack_content("stack-dump-after-compaction");
FILE *heap_after_compaction = print_objects_traversal("after-compaction", 0);
int pos = files_cmp(stack_before, stack_after);
if (pos >= 0) { // position of difference is found
fprintf(stderr, "Stack is modified incorrectly, see position %d\n", pos);
exit(1);
}
fclose(stack_before);
fclose(stack_after);
pos = files_cmp(heap_before_compaction, heap_after_compaction);
if (pos >= 0) { // position of difference is found
fprintf(stderr, "GC invariant is broken, pos is %d\n", pos);
exit(1);
}
fclose(heap_before_compaction);
fclose(heap_after_compaction);
#endif
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "===============================GC cycle has finished\n");
#endif
return gc_alloc_on_existing_heap(size);
}
static void gc_root_scan_stack () {
for (size_t *p = (size_t *)(__gc_stack_top + 4); p < (size_t *)__gc_stack_bottom; ++p) {
gc_test_and_mark_root((size_t **)p);
}
}
void mark_phase (void) {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "marking has started\n");
fprintf(stderr,
"gc_root_scan_stack has started: gc_top=%p bot=%p\n",
(void *)__gc_stack_top,
(void *)__gc_stack_bottom);
#endif
gc_root_scan_stack();
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "gc_root_scan_stack has finished\n");
fprintf(stderr, "scan_extra_roots has started\n");
#endif
scan_extra_roots();
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "scan_extra_roots has finished\n");
fprintf(stderr, "scan_global_area has started\n");
#endif
#ifdef LAMA_ENV
scan_global_area();
#endif
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "scan_global_area has finished\n");
fprintf(stderr, "marking has finished\n");
#endif
}
void compact_phase (size_t additional_size) {
size_t live_size = compute_locations();
// all in words
size_t next_heap_size =
MAX(live_size * EXTRA_ROOM_HEAP_COEFFICIENT + additional_size, MINIMUM_HEAP_CAPACITY);
size_t next_heap_pseudo_size = MAX(next_heap_size, heap.size);
memory_chunk old_heap = heap;
heap.begin = mremap(
heap.begin, WORDS_TO_BYTES(heap.size), WORDS_TO_BYTES(next_heap_pseudo_size), MREMAP_MAYMOVE);
if (heap.begin == MAP_FAILED) {
perror("ERROR: compact_phase: mremap failed\n");
exit(1);
}
heap.end = heap.begin + next_heap_pseudo_size;
heap.size = next_heap_pseudo_size;
heap.current = heap.begin + (old_heap.current - old_heap.begin);
update_references(&old_heap);
physically_relocate(&old_heap);
heap.current = heap.begin + live_size;
}
size_t compute_locations () {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "GC compute_locations started\n");
#endif
size_t *free_ptr = heap.begin;
heap_iterator scan_iter = heap_begin_iterator();
for (; !heap_is_done_iterator(&scan_iter); heap_next_obj_iterator(&scan_iter)) {
void *header_ptr = scan_iter.current;
void *obj_content = get_object_content_ptr(header_ptr);
if (is_marked(obj_content)) {
size_t sz = BYTES_TO_WORDS(obj_size_header_ptr(header_ptr));
// forward address is responsible for object header pointer
set_forward_address(obj_content, (size_t)free_ptr);
free_ptr += sz;
}
}
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "GC compute_locations finished\n");
#endif
// it will return number of words
return free_ptr - heap.begin;
}
void scan_and_fix_region (memory_chunk *old_heap, void *start, void *end) {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "GC scan_and_fix_region started\n");
#endif
for (size_t *ptr = (size_t *)start; ptr < (size_t *)end; ++ptr) {
size_t ptr_value = *ptr;
// this can't be expressed via is_valid_heap_pointer, because this pointer may point area corresponding to the old
// heap
if (is_valid_pointer((size_t *)ptr_value) && (size_t)old_heap->begin <= ptr_value
&& ptr_value <= (size_t)old_heap->current) {
void *obj_ptr = (void *)heap.begin + ((void *)ptr_value - (void *)old_heap->begin);
void *new_addr =
(void *)heap.begin + ((void *)get_forward_address(obj_ptr) - (void *)old_heap->begin);
size_t content_offset = get_header_size(get_type_row_ptr(obj_ptr));
*(void **)ptr = new_addr + content_offset;
}
}
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "GC scan_and_fix_region finished\n");
#endif
}
void scan_and_fix_region_roots (memory_chunk *old_heap) {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "extra roots started: number of extra roots %i\n", extra_roots.current_free);
#endif
for (int i = 0; i < extra_roots.current_free; i++) {
size_t *ptr = (size_t *)extra_roots.roots[i];
size_t ptr_value = *ptr;
if (!is_valid_pointer((size_t *)ptr_value)) { continue; }
// skip this one since it was already fixed from scanning the stack
if ((extra_roots.roots[i] >= (void **)__gc_stack_top
&& extra_roots.roots[i] < (void **)__gc_stack_bottom)
#ifdef LAMA_ENV
|| (extra_roots.roots[i] <= (void **)&__stop_custom_data
&& extra_roots.roots[i] >= (void **)&__start_custom_data)
#endif
) {
#ifdef DEBUG_VERSION
if (is_valid_heap_pointer((size_t *)ptr_value)) {
# ifdef DEBUG_PRINT
fprintf(stderr,
"|\tskip extra root: %p (%p), since it points to Lama's stack top=%p bot=%p\n",
extra_roots.roots[i],
(void *)ptr_value,
(void *)__gc_stack_top,
(void *)__gc_stack_bottom);
# endif
}
# ifdef LAMA_ENV
else if ((extra_roots.roots[i] <= (void *)&__stop_custom_data
&& extra_roots.roots[i] >= (void *)&__start_custom_data)) {
fprintf(
stderr,
"|\tskip extra root: %p (%p), since it points to Lama's static area stop=%p start=%p\n",
extra_roots.roots[i],
(void *)ptr_value,
(void *)&__stop_custom_data,
(void *)&__start_custom_data);
exit(1);
}
# endif
else {
# ifdef DEBUG_PRINT
fprintf(stderr,
"|\tskip extra root: %p (%p): not a valid Lama pointer \n",
extra_roots.roots[i],
(void *)ptr_value);
# endif
}
#endif
continue;
}
if ((size_t)old_heap->begin <= ptr_value && ptr_value <= (size_t)old_heap->current) {
void *obj_ptr = (void *)heap.begin + ((void *)ptr_value - (void *)old_heap->begin);
void *new_addr =
(void *)heap.begin + ((void *)get_forward_address(obj_ptr) - (void *)old_heap->begin);
size_t content_offset = get_header_size(get_type_row_ptr(obj_ptr));
*(void **)ptr = new_addr + content_offset;
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr,
"|\textra root (%p) %p -> %p\n",
extra_roots.roots[i],
(void *)ptr_value,
(void *)*ptr);
#endif
}
}
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "|\textra roots finished\n");
#endif
}
void update_references (memory_chunk *old_heap) {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "GC update_references started\n");
#endif
heap_iterator it = heap_begin_iterator();
while (!heap_is_done_iterator(&it)) {
if (is_marked(get_object_content_ptr(it.current))) {
for (obj_field_iterator field_iter = ptr_field_begin_iterator(it.current);
!field_is_done_iterator(&field_iter);
obj_next_ptr_field_iterator(&field_iter)) {
size_t *field_value = *(size_t **)field_iter.cur_field;
if (field_value < old_heap->begin || field_value > old_heap->current) { continue; }
// this pointer should also be modified according to old_heap->begin
void *field_obj_content_addr =
(void *)heap.begin + (*(void **)field_iter.cur_field - (void *)old_heap->begin);
// important, we calculate new_addr very carefully here, because objects may relocate to another memory chunk
void *new_addr =
heap.begin
+ ((size_t *)get_forward_address(field_obj_content_addr) - (size_t *)old_heap->begin);
// update field reference to point to new_addr
// since, we want fields to point to an actual content, we need to add this extra content_offset
// because forward_address itself is a pointer to the object's header
size_t content_offset = get_header_size(get_type_row_ptr(field_obj_content_addr));
#ifdef DEBUG_VERSION
if (!is_valid_heap_pointer((void *)(new_addr + content_offset))) {
# ifdef DEBUG_PRINT
fprintf(stderr,
"ur: incorrect pointer assignment: on object with id %d",
TO_DATA(get_object_content_ptr(it.current))->id);
# endif
exit(1);
}
#endif
*(void **)field_iter.cur_field = new_addr + content_offset;
}
}
heap_next_obj_iterator(&it);
}
// fix pointers from stack
scan_and_fix_region(old_heap, (void *)__gc_stack_top + 4, (void *)__gc_stack_bottom + 4);
// fix pointers from extra_roots
scan_and_fix_region_roots(old_heap);
#ifdef LAMA_ENV
assert((void *)&__stop_custom_data >= (void *)&__start_custom_data);
scan_and_fix_region(old_heap, (void *)&__start_custom_data, (void *)&__stop_custom_data);
#endif
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "GC update_references finished\n");
#endif
}
void physically_relocate (memory_chunk *old_heap) {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "GC physically_relocate started\n");
#endif
heap_iterator from_iter = heap_begin_iterator();
while (!heap_is_done_iterator(&from_iter)) {
void *obj = get_object_content_ptr(from_iter.current);
heap_iterator next_iter = from_iter;
heap_next_obj_iterator(&next_iter);
if (is_marked(obj)) {
// Move the object from its old location to its new location relative to
// the heap's (possibly new) location, 'to' points to future object header
size_t *to = heap.begin + ((size_t *)get_forward_address(obj) - (size_t *)old_heap->begin);
memmove(to, from_iter.current, obj_size_header_ptr(from_iter.current));
unmark_object(get_object_content_ptr(to));
}
from_iter = next_iter;
}
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "GC physically_relocate finished\n");
#endif
}
inline bool is_valid_heap_pointer (const size_t *p) {
return !UNBOXED(p) && (size_t)heap.begin <= (size_t)p && (size_t)p <= (size_t)heap.current;
}
static inline bool is_valid_pointer (const size_t *p) { return !UNBOXED(p); }
static inline void queue_enqueue (heap_iterator *tail_iter, void *obj) {
void *tail = tail_iter->current;
void *tail_content = get_object_content_ptr(tail);
set_forward_address(tail_content, (size_t)obj);
make_enqueued(obj);
heap_next_obj_iterator(tail_iter);
}
static inline void *queue_dequeue (heap_iterator *head_iter) {
void *head = head_iter->current;
void *head_content = get_object_content_ptr(head);
void *value = (void *)get_forward_address(head_content);
make_dequeued(value);
heap_next_obj_iterator(head_iter);
return value;
}
void mark (void *obj) {
if (!is_valid_heap_pointer(obj) || is_marked(obj)) { return; }
// TL;DR: [q_head_iter, q_tail_iter) q_head_iter -- current dequeue's victim, q_tail_iter -- place for next enqueue
// in forward_address of corresponding element we store address of element to be removed after dequeue operation
heap_iterator q_head_iter = heap_begin_iterator();
// iterator where we will write address of the element that is going to be enqueued
heap_iterator q_tail_iter = q_head_iter;
queue_enqueue(&q_tail_iter, obj);
// invariant: queue contains only objects that are valid heap pointers (each corresponding to content of unmarked
// object) also each object is in queue only once
while (q_head_iter.current != q_tail_iter.current) {
// while the queue is non-empty
void *cur_obj = queue_dequeue(&q_head_iter);
mark_object(cur_obj);
void *header_ptr = get_obj_header_ptr(cur_obj);
for (obj_field_iterator ptr_field_it = ptr_field_begin_iterator(header_ptr);
!field_is_done_iterator(&ptr_field_it);
obj_next_ptr_field_iterator(&ptr_field_it)) {
void *field_value = *(void **)ptr_field_it.cur_field;
if (!is_valid_heap_pointer(field_value) || is_marked(field_value)
|| is_enqueued(field_value)) {
continue;
}
// if we came to this point it must be true that field_value is unmarked and not currently in queue
// thus, we maintain the invariant
queue_enqueue(&q_tail_iter, field_value);
}
}
}
void scan_extra_roots (void) {
for (int i = 0; i < extra_roots.current_free; ++i) {
// this dereferencing is safe since runtime is pushing correct pointers into extra_roots
mark(*extra_roots.roots[i]);
}
}
#ifdef LAMA_ENV
void scan_global_area (void) {
// __start_custom_data is pointing to beginning of global area, thus all dereferencings are safe
for (size_t *ptr = (size_t *)&__start_custom_data; ptr < (size_t *)&__stop_custom_data; ++ptr) {
mark(*(void **)ptr);
}
}
#endif
extern void gc_test_and_mark_root (size_t **root) {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr,
"\troot = %p (%p), stack addresses: [%p, %p)\n",
root,
*root,
(void *)__gc_stack_top + 4,
(void *)__gc_stack_bottom);
#endif
mark((void *)*root);
}
void __gc_init (void) {
__gc_stack_bottom = (size_t)__builtin_frame_address(1) + 4;
__init();
}
void __init (void) {
signal(SIGSEGV, handler);
size_t space_size = INIT_HEAP_SIZE * sizeof(size_t);
srandom(time(NULL));
heap.begin = mmap(
NULL, space_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_32BIT, -1, 0);
if (heap.begin == MAP_FAILED) {
perror("ERROR: __init: mmap failed\n");
exit(1);
}
heap.end = heap.begin + INIT_HEAP_SIZE;
heap.size = INIT_HEAP_SIZE;
heap.current = heap.begin;
clear_extra_roots();
}
extern void __shutdown (void) {
munmap(heap.begin, heap.size);
#ifdef DEBUG_VERSION
cur_id = 0;
#endif
heap.begin = NULL;
heap.end = NULL;
heap.size = 0;
heap.current = NULL;
__gc_stack_top = 0;
__gc_stack_bottom = 0;
}
void clear_extra_roots (void) { extra_roots.current_free = 0; }
void push_extra_root (void **p) {
if (extra_roots.current_free >= MAX_EXTRA_ROOTS_NUMBER) {
perror("ERROR: push_extra_roots: extra_roots_pool overflow\n");
exit(1);
}
assert(p >= (void **)__gc_stack_top || p < (void **)__gc_stack_bottom);
extra_roots.roots[extra_roots.current_free] = p;
extra_roots.current_free++;
}
void pop_extra_root (void **p) {
if (extra_roots.current_free == 0) {
perror("ERROR: pop_extra_root: extra_roots are empty\n");
exit(1);
}
extra_roots.current_free--;
if (extra_roots.roots[extra_roots.current_free] != p) {
perror("ERROR: pop_extra_root: stack invariant violation\n");
exit(1);
}
}
/* Functions for tests */
#if defined(DEBUG_VERSION)
size_t objects_snapshot (int *object_ids_buf, size_t object_ids_buf_size) {
size_t *ids_ptr = (size_t *)object_ids_buf;
size_t i = 0;
for (heap_iterator it = heap_begin_iterator();
!heap_is_done_iterator(&it) && i < object_ids_buf_size;
heap_next_obj_iterator(&it), ++i) {
void *header_ptr = it.current;
data *d = TO_DATA(get_object_content_ptr(header_ptr));
ids_ptr[i] = d->id;
}
return i;
}
#endif
#ifdef DEBUG_VERSION
extern char *de_hash (int);
void dump_heap () {
size_t i = 0;
for (heap_iterator it = heap_begin_iterator(); !heap_is_done_iterator(&it);
heap_next_obj_iterator(&it), ++i) {
void *header_ptr = it.current;
void *content_ptr = get_object_content_ptr(header_ptr);
data *d = TO_DATA(content_ptr);
lama_type t = get_type_header_ptr(header_ptr);
switch (t) {
case ARRAY: fprintf(stderr, "of kind ARRAY\n"); break;
case CLOSURE: fprintf(stderr, "of kind CLOSURE\n"); break;
case STRING: fprintf(stderr, "of kind STRING\n"); break;
case SEXP:
fprintf(stderr, "of kind SEXP with tag %s\n", de_hash(TO_SEXP(content_ptr)->tag));
break;
}
}
}
void set_stack (size_t stack_top, size_t stack_bottom) {
__gc_stack_top = stack_top;
__gc_stack_bottom = stack_bottom;
}
void set_extra_roots (size_t extra_roots_size, void **extra_roots_ptr) {
memcpy(extra_roots.roots, extra_roots_ptr, MIN(sizeof(extra_roots.roots), extra_roots_size));
clear_extra_roots();
}
#endif
/* Utility functions */
size_t get_forward_address (void *obj) {
data *d = TO_DATA(obj);
return GET_FORWARD_ADDRESS(d->forward_address);
}
void set_forward_address (void *obj, size_t addr) {
data *d = TO_DATA(obj);
SET_FORWARD_ADDRESS(d->forward_address, addr);
}
bool is_marked (void *obj) {
data *d = TO_DATA(obj);
int mark_bit = GET_MARK_BIT(d->forward_address);
return mark_bit;
}
void mark_object (void *obj) {
data *d = TO_DATA(obj);
SET_MARK_BIT(d->forward_address);
}
void unmark_object (void *obj) {
data *d = TO_DATA(obj);
RESET_MARK_BIT(d->forward_address);
}
bool is_enqueued (void *obj) {
data *d = TO_DATA(obj);
return IS_ENQUEUED(d->forward_address) != 0;
}
void make_enqueued (void *obj) {
data *d = TO_DATA(obj);
MAKE_ENQUEUED(d->forward_address);
}
void make_dequeued (void *obj) {
data *d = TO_DATA(obj);
MAKE_DEQUEUED(d->forward_address);
}
heap_iterator heap_begin_iterator () {
heap_iterator it = {.current = heap.begin};
return it;
}
void heap_next_obj_iterator (heap_iterator *it) {
void *ptr = it->current;
size_t obj_size = obj_size_header_ptr(ptr);
// make sure we take alignment into consideration
obj_size = BYTES_TO_WORDS(obj_size);
it->current += obj_size;
}
bool heap_is_done_iterator (heap_iterator *it) { return it->current >= heap.current; }
lama_type get_type_row_ptr (void *ptr) {
data *data_ptr = TO_DATA(ptr);
return get_type_header_ptr(data_ptr);
}
lama_type get_type_header_ptr (void *ptr) {
int *header = (int *)ptr;
switch (TAG(*header)) {
case ARRAY_TAG: return ARRAY;
case STRING_TAG: return STRING;
case CLOSURE_TAG: return CLOSURE;
case SEXP_TAG: return SEXP;
default: {
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "ERROR: get_type_header_ptr: unknown object header, cur_id=%d", cur_id);
raise(SIGINT); // only for debug purposes
#else
# ifdef FULL_INVARIANT_CHECKS
# ifdef DEBUG_PRINT
fprintf(stderr,
"ERROR: get_type_header_ptr: unknown object header, ptr is %p, tag %i, heap size is "
"%d cur_id=%d stack_top=%p stack_bot=%p ",
ptr,
TAG(*header),
heap.size,
cur_id,
(void *)__gc_stack_top,
(void *)__gc_stack_bottom);
# endif
FILE *heap_before_compaction = print_objects_traversal("dump_kill", 1);
fclose(heap_before_compaction);
# endif
kill(getpid(), SIGSEGV);
#endif
exit(1);
}
}
}
size_t obj_size_row_ptr (void *ptr) {
data *data_ptr = TO_DATA(ptr);
return obj_size_header_ptr(data_ptr);
}
size_t obj_size_header_ptr (void *ptr) {
int len = LEN(*(int *)ptr);
switch (get_type_header_ptr(ptr)) {
case ARRAY: return array_size(len);
case STRING: return string_size(len);
case CLOSURE: return closure_size(len);
case SEXP: return sexp_size(len);
default: {
#ifdef DEBUG_VERSION
fprintf(stderr, "ERROR: obj_size_header_ptr: unknown object header, cur_id=%d", cur_id);
raise(SIGINT); // only for debug purposes
#else
perror("ERROR: obj_size_header_ptr: unknown object header\n");
#endif
exit(1);
}
}
}
size_t array_size (size_t sz) { return get_header_size(ARRAY) + MEMBER_SIZE * sz; }
size_t string_size (size_t len) {
// string should be null terminated
return get_header_size(STRING) + len + 1;
}
size_t closure_size (size_t sz) { return get_header_size(CLOSURE) + MEMBER_SIZE * sz; }
size_t sexp_size (size_t members) { return get_header_size(SEXP) + MEMBER_SIZE * (members + 1); }
obj_field_iterator field_begin_iterator (void *obj) {
lama_type type = get_type_header_ptr(obj);
obj_field_iterator it = {.type = type, .obj_ptr = obj, .cur_field = get_object_content_ptr(obj)};
switch (type) {
case STRING: {
it.cur_field = get_end_of_obj(it.obj_ptr);
break;
}
case CLOSURE:
case SEXP: {
it.cur_field += MEMBER_SIZE;
break;
}
default: break;
}
return it;
}
obj_field_iterator ptr_field_begin_iterator (void *obj) {
obj_field_iterator it = field_begin_iterator(obj);
// corner case when obj has no fields
if (field_is_done_iterator(&it)) { return it; }
if (is_valid_pointer(*(size_t **)it.cur_field)) { return it; }
obj_next_ptr_field_iterator(&it);
return it;
}
void obj_next_field_iterator (obj_field_iterator *it) { it->cur_field += MEMBER_SIZE; }
void obj_next_ptr_field_iterator (obj_field_iterator *it) {
do {
obj_next_field_iterator(it);
} while (!field_is_done_iterator(it) && !is_valid_pointer(*(size_t **)it->cur_field));
}
bool field_is_done_iterator (obj_field_iterator *it) {
return it->cur_field >= get_end_of_obj(it->obj_ptr);
}
void *get_obj_header_ptr (void *ptr) {
lama_type type = get_type_row_ptr(ptr);
return ptr - get_header_size(type);
}
void *get_object_content_ptr (void *header_ptr) {
lama_type type = get_type_header_ptr(header_ptr);
return header_ptr + get_header_size(type);
}
void *get_end_of_obj (void *header_ptr) { return header_ptr + obj_size_header_ptr(header_ptr); }
size_t get_header_size (lama_type type) {
switch (type) {
case STRING:
case CLOSURE:
case ARRAY:
case SEXP: return DATA_HEADER_SZ;
default: perror("ERROR: get_header_size: unknown object type\n");
#ifdef DEBUG_VERSION
raise(SIGINT); // only for debug purposes
#endif
exit(1);
}
}
void *alloc_string (int len) {
data *obj = alloc(string_size(len));
obj->data_header = STRING_TAG | (len << 3);
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "%p, [STRING] tag=%zu\n", obj, TAG(obj->data_header));
#endif
#ifdef DEBUG_VERSION
obj->id = cur_id;
#endif
obj->forward_address = 0;
return obj;
}
void *alloc_array (int len) {
data *obj = alloc(array_size(len));
obj->data_header = ARRAY_TAG | (len << 3);
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "%p, [ARRAY] tag=%zu\n", obj, TAG(obj->data_header));
#endif
#ifdef DEBUG_VERSION
obj->id = cur_id;
#endif
obj->forward_address = 0;
return obj;
}
void *alloc_sexp (int members) {
sexp *obj = alloc(sexp_size(members));
obj->data_header = SEXP_TAG | (members << 3);
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "%p, SEXP tag=%zu\n", obj, TAG(obj->data_header));
#endif
#ifdef DEBUG_VERSION
obj->id = cur_id;
#endif
obj->forward_address = 0;
obj->tag = 0;
return obj;
}
void *alloc_closure (int captured) {
data *obj = alloc(closure_size(captured));
obj->data_header = CLOSURE_TAG | (captured << 3);
#if defined(DEBUG_VERSION) && defined(DEBUG_PRINT)
fprintf(stderr, "%p, [CLOSURE] tag=%zu\n", obj, TAG(obj->data_header));
#endif
#ifdef DEBUG_VERSION
obj->id = cur_id;
#endif
obj->forward_address = 0;
return obj;
}

View file

@ -1,9 +1,12 @@
#include "interpreter.h" #include "interpreter.h"
#include "../../runtime/runtime.h"
#include "../../runtime/gc.h"
#include "utils.h"
#include "types.h" #include "types.h"
#include "builtin.h" #include "stack.h"
#include "operations.h" #include "runtime_externs.h"
#include "runtime.h"
#include "gc.h"
int ip_read_int(char** ip) { int ip_read_int(char** ip) {
*ip += sizeof(int); *ip += sizeof(int);
@ -25,6 +28,21 @@ void run(bytefile *bf) {
const size_t OPS_SIZE = 13; const size_t OPS_SIZE = 13;
const char *ops [] = {"+", "-", "*", "/", "%", "<", "<=", ">", ">=", "==", "!=", "&&", "!!"}; const char *ops [] = {"+", "-", "*", "/", "%", "<", "<=", ">", ">=", "==", "!=", "&&", "!!"};
int(*ops_func[])(void*, void*) = {
&Ls__Infix_43, // +
&Ls__Infix_45, // -
&Ls__Infix_42, // *
&Ls__Infix_47, // /
&Ls__Infix_37, // %
&Ls__Infix_60, // <
&Ls__Infix_6061, // <=
&Ls__Infix_62, // >
&Ls__Infix_6261, // >=
&Ls__Infix_6161, // ==
&Ls__Infix_3361, // !=
&Ls__Infix_3838, // &&
&Ls__Infix_3333, // !!
};
const size_t PATS_SIZE = 7; const size_t PATS_SIZE = 7;
const char *pats[] = {"=str", "#string", "#array", "#sexp", "#ref", "#val", "#fun"}; const char *pats[] = {"=str", "#string", "#array", "#sexp", "#ref", "#val", "#fun"};
@ -266,5 +284,5 @@ void run(bytefile *bf) {
} }
while (1); while (1);
stop:; stop:;
destruct_state(&s); cleanup_state(&s);
} }

View file

@ -4,28 +4,14 @@
#include <errno.h> #include <errno.h>
#include <malloc.h> #include <malloc.h>
#include "runtime.h" #include "../../runtime/runtime.h"
#include "utils.h"
#include "parser.h" #include "parser.h"
void *__start_custom_data; void *__start_custom_data;
void *__stop_custom_data; void *__stop_custom_data;
/* Gets a string from a string table by an index */
char* get_string (bytefile *f, int pos) {
return &f->string_ptr[pos];
}
/* Gets a name for a public symbol */
char* get_public_name (bytefile *f, int i) {
return get_string (f, f->public_ptr[i*2]);
}
/* Gets an offset for a publie symbol */
int get_public_offset (bytefile *f, int i) {
return f->public_ptr[i*2+1];
}
/* Reads a binary bytecode file by name and unpacks it */ /* Reads a binary bytecode file by name and unpacks it */
bytefile* read_file (char *fname) { bytefile* read_file (char *fname) {
FILE *f = fopen (fname, "rb"); FILE *f = fopen (fname, "rb");

138
byterun/src/stack.c Normal file
View file

@ -0,0 +1,138 @@
#include "stack.h"
#include "../../runtime/runtime.h"
extern size_t STACK_SIZE;
void s_push(struct State *s, void *val) {
if (s->vp == s->stack) {
failure("stack overflow");
}
--s->vp;
*s->vp = val;
}
void s_push_nil(struct State *s) {
s_push(s, NULL);
}
void s_pushn_nil(struct State *s, size_t n) {
for (size_t i = 0; i < n; ++i) {
s_push(s, NULL);
}
}
void* s_pop(struct State *s) {
if (s->vp == s->stack + STACK_SIZE || (s->fp != NULL && s->vp == s->fp->end)) {
failure("take: no var");
}
void* value = *s->vp;
*s->vp = NULL;
++s->vp;
return value;
}
void s_popn(struct State *s, size_t n) {
for (size_t i = 0; i < n; ++i) {
s_pop(s);
}
}
// ------ functions ------
// TODO
// |> param_0 ... param_n | frame[ ret rp prev_fp &params &locals &end ]
// |> local_0 ... local_m |> | ...
//
// where |> defines corresponding frame pointer, | is stack pointer location
// before / after new frame added
void s_enter_f(struct State *s, char *func_ip, size_t params_sz,
size_t locals_sz) {
if (params_sz > s->vp - s->stack ||
(s->fp != NULL && params_sz > s->vp - s->fp->end)) {
failure("not enough parameters in stack");
}
size_t frame_sz_in_ptr = sizeof(struct Frame) / sizeof(void *);
struct Frame frame = {
.ret = NULL, // field in frame itself
.rp = s->ip,
.prev_fp = s->fp,
.params = s->vp - params_sz,
.locals = s->vp + frame_sz_in_ptr,
.end = s->vp + frame_sz_in_ptr + locals_sz,
};
// put frame on stack
s->fp = (struct Frame *)s->vp;
(*s->fp) = frame;
// update stack pointer
s->vp = frame.end;
// go to function body
s->ip = func_ip;
}
// TODO
void s_exit_f(struct State *s) {
if (s->fp == NULL) {
failure("exit: no func");
}
// drop stack entities and locals
s_popn(s, f_locals_sz(s->fp));
// TODO: skip
// drop params
s->vp = (void **)s->fp;
s_popn(s, f_args_sz(s->fp));
// s->vp = s->fp->params; // done automatically
// save ret_val
s_push(s, s->fp->ret);
s->ip = s->fp->rp;
s->fp = s->fp->prev_fp;
}
// TODO
union VarT **var_by_category(struct State *s, enum VarCategory category,
int id) {
if (id < 0) {
failure("can't read variable: negative id %i", id);
}
union VarT **var = NULL;
switch (category) {
case VAR_GLOBAL:
// TODO: FIXME
break;
case VAR_LOCAL:
if (s->fp == NULL) {
failure("can't read local outside of function");
}
if (frame_args_sz(s->fp) <= id) {
failure("can't read local: too big id, %i >= %ul", f_locals_sz(s->fp),
id);
}
var = (union VarT **)&f_locals_at(s->fp, id);
break;
case VAR_ARGUMENT:
if (s->fp == NULL) {
failure("can't read argument outside of function");
}
if (f_args_sz(s->fp) <= id) {
failure("can't read arguments: too big id, %i >= %ul", f_args_sz(s->fp),
id);
}
var = (union VarT **)&f_args_at(s->fp, id);
break;
case VAR_C:
// TODO: ??
break;
}
return var;
}

View file

@ -1,22 +1,53 @@
#include "types.h" #include "types.h"
#include "../../runtime/gc.h"
#include <stdlib.h> #include <stdlib.h>
// TODO: gc use extern size_t __gc_stack_top, __gc_stack_bottom;
struct State init_state(bytefile *bf) { const size_t STACK_SIZE = 100000;
// ---
void st_stack_push(struct State* state, void* value) {
}
void st_stack_pop(struct State* state) {
if (state->vp == st->stack)
}
size_t st_stack_size(struct State* state) {
return (state->stack + STACK_SIZE) - state->vp;
}
void** st_stack_top(struct State* state) {
return state->vp;
}
// ---
static struct State alloc_state(bytefile *bf) {
struct State state = { struct State state = {
.stack = calloc(1000/* TODO */, sizeof(void*)), .stack = calloc(STACK_SIZE, sizeof(void*)),
.ip = bf->code_ptr, .ip = bf->code_ptr,
.prev_ip = NULL, .prev_ip = NULL,
}; };
state.vp = *state.stack; state.vp = *state.stack + STACK_SIZE; // [top -> bottom] stack
state.fp = NULL; state.fp = NULL;
return state; return state;
} }
void destruct_state(struct State* state) { struct State init_state(bytefile *bf) {
__init();
struct State state = alloc_state(bf);
__gc_stack_bottom = (size_t)state.vp;
return state;
}
static void destruct_state(struct State* state) {
free(state->stack); free(state->stack);
state->vp = NULL; state->vp = NULL;
@ -25,3 +56,8 @@ void destruct_state(struct State* state) {
state->prev_ip = NULL; state->prev_ip = NULL;
} }
void cleanup_state(struct State* state) {
destruct_state(state);
__shutdown();
}

22
byterun/src/utils.c Normal file
View file

@ -0,0 +1,22 @@
#include "utils.h"
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
/* Gets a string from a string table by an index */
extern char* get_string(bytefile *f, int pos) {
return &f->string_ptr[pos];
}
/* Gets a name for a public symbol */
extern char* get_public_name (bytefile *f, int i) {
return get_string(f, f->public_ptr[i*2]);
}
/* Gets an offset for a publie symbol */
extern int get_public_offset (bytefile *f, int i) {
return f->public_ptr[i*2+1];
}
// ---

View file

@ -1,9 +0,0 @@
add_rules("mode.debug", "mode.release")
set_languages("c23")
target("byterun")
set_kind("binary")
add_includedirs("include")
add_headerfiles("include/*.h")
add_files("src/*.c")

View file

@ -1,15 +0,0 @@
RUNTIME=runtime.a
.DEFAULT := $(RUNTIME)
$(RUNTIME): gc_runtime.o runtime.o
ar rc $@ gc_runtime.o runtime.o
gc_runtime.o: gc_runtime.s
$(CC) -g -fstack-protector-all -m32 -c gc_runtime.s
runtime.o: runtime.c runtime.h
$(CC) -g -fstack-protector-all -m32 -c runtime.c
clean:
$(RM) *.a *.o *~