mirror of
https://github.com/ProgramSnail/Lama.git
synced 2025-12-07 23:38:47 +00:00
Lectures
This commit is contained in:
parent
ff53a6ba7e
commit
29efb45353
1 changed files with 143 additions and 0 deletions
143
doc/07.tex
Normal file
143
doc/07.tex
Normal file
|
|
@ -0,0 +1,143 @@
|
|||
\section{Arrays and strings}
|
||||
|
||||
An array can be represented as a pair: the length of the array and a mapping from indices to elements. If we denote
|
||||
$\mathscr E$ the set of elements then the set of all arrays $\mathscr A (\mathscr E)$ can be defined as follows:
|
||||
|
||||
\[
|
||||
\mathscr A(\mathscr E) = \mathbb N \times (\mathbb N \to \mathscr E)
|
||||
\]
|
||||
|
||||
For an array $(n, f)$ we assume $\dom{f}=[0\,..\,n-1]$. An element selection function:
|
||||
|
||||
\[
|
||||
\begin{array}{c}
|
||||
[\bullet] : \mathscr A (\mathscr E) \to \mathbb N \to \mathscr E\\[2mm]
|
||||
(n, f) [i] = \left\{
|
||||
\begin{array}{rcl}
|
||||
f\;i &, & i < n\\
|
||||
\bot&,&\;\mbox{otherwise}
|
||||
\end{array}
|
||||
\right.
|
||||
\end{array}
|
||||
\]
|
||||
|
||||
\begin{comment}
|
||||
A set of (ASCII) characters:
|
||||
|
||||
\[
|
||||
\mathscr C = [0\,..\,255]
|
||||
\]
|
||||
|
||||
A string is an array of characters:
|
||||
|
||||
\[
|
||||
\mathscr S = \mathscr A (\mathscr C)
|
||||
\]
|
||||
|
||||
Adding strings and arrays to the language changes the set of values the programs operate on:
|
||||
\end{comment}
|
||||
|
||||
We represent arrays by \emph{references}. Thus, we introduce a (linearly) ordered set of locations
|
||||
|
||||
\[
|
||||
\mathscr L = \{l_0, l_1, \dots\}
|
||||
\]
|
||||
|
||||
Now, the set of all values the programs operate on can be described as follows:
|
||||
|
||||
\[
|
||||
\mathscr V = \mathbb Z \uplus \mathscr L
|
||||
\]
|
||||
|
||||
Here, every value is either an integer, or a reference (some location). The disjoint union ``$\uplus$'' makes it possible to
|
||||
unambiguously discriminate between the shapes of each value. To access arrays, we introduce an abstraction of memory:
|
||||
|
||||
|
||||
\[
|
||||
\mathscr M = \mathscr L \to \mathscr A\,(\mathscr V)
|
||||
\]
|
||||
|
||||
We now add two more components to the states: a memory function $\mu$ and the first free memory location $l_m$.
|
||||
|
||||
%Enriching the value set extends the definitions of state (which now has to map variable names to values) and
|
||||
%stack (similarly), but does not affect the definition of input/output streams, read and write primitives, etc.
|
||||
|
||||
\subsection{Adding arrays/strings on expression level}
|
||||
|
||||
On expression level, abstractly/concretely:
|
||||
|
||||
\[
|
||||
\begin{array}{rclll}
|
||||
\mathscr E += & &\mathscr E \mathtt{[} \mathscr E \mathtt{]} & (\llang{$a$ [$e$]}) & \mbox{taking an element}\\
|
||||
& \mid & \mathtt{[} \mathscr E^* \mathtt{]} & (\llang{[$e_1$, $e_2$,.., $e_k$]}) & \mbox{creating an array}\\
|
||||
& \mid & \mathscr E \mathtt{.length} & ($e$\mathtt{.length}) & \mbox{taking the length}
|
||||
\end{array}
|
||||
\]
|
||||
|
||||
In addition, in a concrete syntax we supply two special forms for strings: \llang{'$x$'} as a denotation for integer code of ASCII symbol
|
||||
$x$, and \llang{"..."}~--- a string constant.
|
||||
|
||||
The semantics of enriched expressions is modified as follows. First, we add two additional premises to the rule for binary operators:
|
||||
|
||||
\setsubarrow{_{\mathscr E}}
|
||||
\[\trule{\begin{array}{c}
|
||||
\withenv{\Phi}{\trans{c}{A}{c^\prime=\inbr{\_,\, \_,\, \_,\, a}}}\\
|
||||
\withenv{\Phi}{\trans{c^\prime}{B}{\inbr{\sigma^{\prime\prime}, i^{\prime\prime}, o^{\prime\prime}, b}}}\\
|
||||
a\in\mathbb Z,\,b\in\mathbb Z
|
||||
\end{array}
|
||||
}
|
||||
{\withenv{\Phi}{\trans{c}{A\otimes B}{\inbr{\sigma^{\prime\prime}, i^{\prime\prime}, o^{\prime\prime}, a\oplus b}}}}
|
||||
\ruleno{Binop}
|
||||
\]
|
||||
|
||||
These two premises ensure that both operand expressions are evaluated into integer values. Second, we have to add the rules for new
|
||||
kinds of expressions (see Figure~\ref{array_expressions}).
|
||||
|
||||
\begin{figure}
|
||||
\[\trule{\begin{array}{c}
|
||||
\withenv{\Phi}{\trans{c}{E}{c^\prime=\inbr{\_, \_, \_, l}}}\\
|
||||
\withenv{\Phi}{\trans{c^\prime}{J}{\inbr{s^{\prime\prime}=\inbr{\_,\, \_,\, \_,\, \mu,\,\_},\, i^{\prime\prime},\, o^{\prime\prime},\, j}}}\\
|
||||
l\in \mathscr L,\,(n,\,f)=\mu\,\;l\,j\in\mathbb N,\,j<n
|
||||
\end{array}}
|
||||
{\withenv{\Phi}{\trans{c}{E\,\mathtt{[}J\mathtt{]}}{\inbr{s^{\prime\prime}, i^{\prime\prime}, o^{\prime\prime}, f\,j}}}}
|
||||
\ruleno{ArrayElement}
|
||||
\]
|
||||
\[\trule{\withenv{\Phi}{\trans{c_j}{e_j}{c_{j+1}=\inbr{\inbr{\sigma_g^{j+1},\,S^{j+1},\,\sigma_l^{j+1},\,\mu^{j+1},\,l_{m_{j+1}}}, i_{j+1}, o_{j+1}, a_j}}},\,j\in [0..k]}
|
||||
{\withenv{\Phi}{\trans{c_0}{\mathtt{[}e_0, e_1,...,e_k\mathtt{]}}{\inbr{\inbr{\sigma_g^{j+1},\,S^{j+1},\,\sigma_l^{j+1},\,\mu^{j+1}[l_{m_{k+1}}\gets (k,\,\lambda i\,.\,a_i)],\, l_{m_{k+1}+1}}, i_{k+1}, o_{k+1}, l_{m_{k+1}}}}}}
|
||||
\ruleno{ArrayConstructor}
|
||||
\]
|
||||
\[\trule{\begin{array}{c}
|
||||
\withenv{\Phi}{\trans{c}{E}{\inbr{s^{\prime\prime}=\inbr{\_,\,\_,\,\_,\,\mu,\,\_}, i^{\prime\prime}, o^{\prime\prime}, l}}}\\
|
||||
l\in\mathscr L,\,(n,\,f)=\mu\;l
|
||||
\end{array}
|
||||
}
|
||||
{\withenv{\Phi}{\trans{c}{E\mathtt{.length}}{\inbr{s^{\prime\prime}, i^{\prime\prime}, o^{\prime\prime}, n}}}}
|
||||
\ruleno{ArrayLength}
|
||||
\]
|
||||
\caption{Big-step Operational Semantics for Array Expressions}
|
||||
\label{array_expressions}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Adding arrays/strings on statement level}
|
||||
|
||||
On statement level, we add the single construct:
|
||||
|
||||
\[
|
||||
\mathscr S += \mathscr E \mathtt{[} \mathscr E \mathtt{]} \llang{:=} \mathscr E
|
||||
\]
|
||||
|
||||
This construct is interpreted as an assignment to an element of an array. The semantics of this construct is described by the following rule:
|
||||
|
||||
\[
|
||||
\trule{\setsubarrow{_{\mathscr E}}
|
||||
\begin{array}{c}
|
||||
\withenv{\Phi}{\trans{c}{E}{c^\prime=\inbr{\_,\_,\_, (n,\,f)}}}\\
|
||||
\withenv{\Phi}{\trans{c^\prime}{J}{c^{\prime\prime}=\inbr{\_,\_,\_,j}}}\\
|
||||
\withenv{\Phi}{\trans{c^{\prime\prime}}{F}{c^{\prime\prime\prime}=\inbr{s^{\prime\prime},i^{\prime\prime},o^{\prime\prime},y}}}\\
|
||||
j\in\mathbb N,\,j<n\\
|
||||
\setsubarrow{}\withenv{\llang{skip},\,\Phi}{\trans{\inbr{\mathtt{update}(s^{\prime\prime}, E, (n,\,f [j\gets y])),i^{\prime\prime},o^{\prime\prime},\hbox{---}}}{K}{\widetilde{c}}}
|
||||
\end{array}
|
||||
}
|
||||
{\setsubarrow{}\withenv{K,\,\Phi}{\trans{c}{E\mathtt{[}J\mathtt{]}\llang{:=}F}{\widetilde{c}}}}
|
||||
\ruleno{ArrayAssign}
|
||||
\]
|
||||
Loading…
Add table
Add a link
Reference in a new issue