mirror of
https://github.com/ProgramSnail/Lama.git
synced 2025-12-05 22:38:44 +00:00
Implemented control constructs
This commit is contained in:
commit
a60a491e73
23 changed files with 487 additions and 9 deletions
289
doc/03.tex
Normal file
289
doc/03.tex
Normal file
|
|
@ -0,0 +1,289 @@
|
|||
\documentclass{article}
|
||||
|
||||
\usepackage{amssymb, amsmath}
|
||||
\usepackage{alltt}
|
||||
\usepackage{pslatex}
|
||||
\usepackage{epigraph}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{latexsym}
|
||||
\usepackage{array}
|
||||
\usepackage{comment}
|
||||
\usepackage{makeidx}
|
||||
\usepackage{listings}
|
||||
\usepackage{indentfirst}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{color}
|
||||
\usepackage{url}
|
||||
\usepackage{xspace}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{stmaryrd}
|
||||
\usepackage{amsmath, amsthm, amssymb}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{euscript}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{mathrsfs}
|
||||
\usepackage{multirow,bigdelim}
|
||||
\usepackage{subcaption}
|
||||
\usepackage{placeins}
|
||||
|
||||
\makeatletter
|
||||
|
||||
\makeatother
|
||||
|
||||
\definecolor{shadecolor}{gray}{1.00}
|
||||
\definecolor{darkgray}{gray}{0.30}
|
||||
|
||||
\def\transarrow{\xrightarrow}
|
||||
\newcommand{\setarrow}[1]{\def\transarrow{#1}}
|
||||
|
||||
\def\padding{\phantom{X}}
|
||||
\newcommand{\setpadding}[1]{\def\padding{#1}}
|
||||
|
||||
\newcommand{\trule}[2]{\frac{#1}{#2}}
|
||||
\newcommand{\crule}[3]{\frac{#1}{#2},\;{#3}}
|
||||
\newcommand{\withenv}[2]{{#1}\vdash{#2}}
|
||||
\newcommand{\trans}[3]{{#1}\transarrow{\padding#2\padding}{#3}}
|
||||
\newcommand{\ctrans}[4]{{#1}\transarrow{\padding#2\padding}{#3},\;{#4}}
|
||||
\newcommand{\llang}[1]{\mbox{\lstinline[mathescape]|#1|}}
|
||||
\newcommand{\pair}[2]{\inbr{{#1}\mid{#2}}}
|
||||
\newcommand{\inbr}[1]{\left<{#1}\right>}
|
||||
\newcommand{\highlight}[1]{\color{red}{#1}}
|
||||
\newcommand{\ruleno}[1]{\eqno[\scriptsize\textsc{#1}]}
|
||||
\newcommand{\rulename}[1]{\textsc{#1}}
|
||||
\newcommand{\inmath}[1]{\mbox{$#1$}}
|
||||
\newcommand{\lfp}[1]{fix_{#1}}
|
||||
\newcommand{\gfp}[1]{Fix_{#1}}
|
||||
\newcommand{\vsep}{\vspace{-2mm}}
|
||||
\newcommand{\supp}[1]{\scriptsize{#1}}
|
||||
\newcommand{\sembr}[1]{\llbracket{#1}\rrbracket}
|
||||
\newcommand{\cd}[1]{\texttt{#1}}
|
||||
\newcommand{\free}[1]{\boxed{#1}}
|
||||
\newcommand{\binds}{\;\mapsto\;}
|
||||
\newcommand{\dbi}[1]{\mbox{\bf{#1}}}
|
||||
\newcommand{\sv}[1]{\mbox{\textbf{#1}}}
|
||||
\newcommand{\bnd}[2]{{#1}\mkern-9mu\binds\mkern-9mu{#2}}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newcommand{\meta}[1]{{\mathcal{#1}}}
|
||||
\renewcommand{\emptyset}{\varnothing}
|
||||
|
||||
\definecolor{light-gray}{gray}{0.90}
|
||||
\newcommand{\graybox}[1]{\colorbox{light-gray}{#1}}
|
||||
|
||||
\lstdefinelanguage{ocaml}{
|
||||
keywords={let, begin, end, in, match, type, and, fun,
|
||||
function, try, with, class, object, method, of, rec, repeat, until,
|
||||
while, not, do, done, as, val, inherit, module, sig, @type, struct,
|
||||
if, then, else, open, virtual, new, fresh},
|
||||
sensitive=true,
|
||||
%basicstyle=\small,
|
||||
commentstyle=\scriptsize\rmfamily,
|
||||
keywordstyle=\ttfamily\bfseries,
|
||||
identifierstyle=\ttfamily,
|
||||
basewidth={0.5em,0.5em},
|
||||
columns=fixed,
|
||||
fontadjust=true,
|
||||
literate={fun}{{$\lambda$}}1 {->}{{$\to$}}3 {===}{{$\equiv$}}1 {=/=}{{$\not\equiv$}}1 {|>}{{$\triangleright$}}3 {\&\&\&}{{$\wedge$}}2 {|||}{{$\vee$}}2 {^}{{$\uparrow$}}1,
|
||||
morecomment=[s]{(*}{*)}
|
||||
}
|
||||
|
||||
\lstset{
|
||||
mathescape=true,
|
||||
%basicstyle=\small,
|
||||
identifierstyle=\ttfamily,
|
||||
keywordstyle=\bfseries,
|
||||
commentstyle=\scriptsize\rmfamily,
|
||||
basewidth={0.5em,0.5em},
|
||||
fontadjust=true,
|
||||
escapechar=!,
|
||||
language=ocaml
|
||||
}
|
||||
|
||||
\sloppy
|
||||
|
||||
\newcommand{\ocaml}{\texttt{OCaml}\xspace}
|
||||
|
||||
\theoremstyle{definition}
|
||||
|
||||
\title{Structural Induction\\
|
||||
(the first draft)
|
||||
}
|
||||
|
||||
\author{Dmitry Boulytchev}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
%\section{Structural Induction}
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{\textwidth}
|
||||
\[
|
||||
\begin{array}{rclr}
|
||||
\sembr{n} & = & \lambda \sigma . n & \mbox{\scriptsize\rulename{[Const]}}\\
|
||||
\sembr{x} & = & \lambda \sigma . \sigma x & \mbox{\scriptsize\rulename{[Var]}} \\
|
||||
\sembr{A\otimes B} & = & \lambda \sigma . (\sembr{A}\sigma \oplus \sembr{B}\sigma) & \mbox{\scriptsize\rulename{[Binop]}}
|
||||
\end{array}
|
||||
\]
|
||||
\caption{Denotational semantics for expressions}
|
||||
\end{subfigure}
|
||||
\vskip5mm
|
||||
\begin{subfigure}{\textwidth}
|
||||
\[\trans{c}{\epsilon}{c}\ruleno{Stop$_{SM}$}\]
|
||||
\[\trule{\trans{\inbr{(x\oplus y)\llang{::}st, s}}{p}{c^\prime}}{\trans{\inbr{y\llang{::}x\llang{::}st, s}}{(\llang{BINOP $\;\otimes$})p}{c^\prime}}\ruleno{Binop$_{SM}$}\]
|
||||
\[\trule{\trans{\inbr{z\llang{::}st, s}}{p}{c^\prime}}{\trans{\inbr{st, s}}{(\llang{CONST $\;z$})p}{c^\prime}}\ruleno{Const$_{SM}$}\]
|
||||
\[\trule{\trans{\inbr{(s\;x)\llang{::}st, s}}{p}{c^\prime}}{\trans{\inbr{st, s}}{(\llang{LD $\;x$})p}{c^\prime}}\ruleno{LD$_{SM}$}\]
|
||||
\caption{Big-step operational semantics for stack machine}
|
||||
\end{subfigure}
|
||||
\vskip5mm
|
||||
\begin{subfigure}{\textwidth}
|
||||
\[
|
||||
\begin{array}{rclr}
|
||||
\sembr{x}^{\mathscr E}_{comp}&=&\llang{[LD $\;x$]} & \mbox{\scriptsize\rulename{[Var$_{comp}$]}} \\
|
||||
\sembr{n}^{\mathscr E}_{comp}&=&\llang{[CONST $\;n$]} & \mbox{\scriptsize\rulename{[Const$_{comp}$]}}\\
|
||||
\sembr{A\otimes B}^{\mathscr E}_{comp}&=&\sembr{A}^{\mathscr E}_{comp}\llang{@}\sembr{B}^{\mathscr E}_{comp}\llang{@[BINOP $\otimes$]}) & \mbox{\scriptsize\rulename{[Binop$_{comp}$]}}
|
||||
\end{array}
|
||||
\]
|
||||
\caption{Compilation}
|
||||
\end{subfigure}
|
||||
\caption{All relevant definitions}
|
||||
\label{definitions}
|
||||
\end{figure}
|
||||
|
||||
|
||||
We have considered two languages (a language of expressions $\mathscr E$ and a language of stack machine programs $\mathscr P$), and a compiler from the former to the latter.
|
||||
It can be formally proven, that the compiler is (fully) correct in the sense, given in the lecture 1. Due to the simplicity of the languages, the proof technique~---
|
||||
\emph{structural induction}~--- is simple as well.
|
||||
|
||||
First, we collect all needed definitions in one place (see Fig.~\ref{definitions}). We simplified the description of stack machine semantics a little bit: first,
|
||||
we dropped off all instructions, which cannot be generated by the expression compiler, and then, we removed the input and output streams from the stack machine
|
||||
configurations, since they are never affected by the remaining instructions.
|
||||
|
||||
\begin{lemma}(Determinism)
|
||||
Let $p$ be an arbitrary stack machine program, and let $c$, $c_1$ and $c_2$ be arbitrary configurations. Then
|
||||
|
||||
\[
|
||||
\trans{c}{p}{c_1} \wedge \trans{c}{p}{c_2} \Rightarrow c_1= c_2
|
||||
\]
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Induction on the structure of $p$.
|
||||
|
||||
\textbf{Base case}. If $p=\epsilon$, then, by the rule \rulename{Stop$_{SM}$}, $c_1=c$ and $c_2=c$. Since no other rule can be
|
||||
applied, we're done.
|
||||
|
||||
\textbf{Induction step}. If $p=\iota p^\prime$, then, by condition, we have
|
||||
|
||||
\[
|
||||
\trule{\trans{c^\prime}{p^\prime}{c_1}}{\trans{c}{\iota p^\prime}{c_1}}
|
||||
\]
|
||||
|
||||
and
|
||||
|
||||
\[
|
||||
\trule{\trans{c^{\prime\prime}}{p^\prime}{c_2}}{\trans{c}{\iota p^\prime}{c_2}}
|
||||
\]
|
||||
|
||||
where $c^\prime$ and $c^{\prime\prime}$ depend only on $c$ and $\iota$. By the case analysis on $\iota$ we conclude, that
|
||||
$c^\prime=c^{\prime\prime}$. Since $p^\prime$ is shorter, than $p$, we can apply the induction hypothesis, which gives us
|
||||
$c_1=c_2$.
|
||||
\end{proof}
|
||||
|
||||
\FloatBarrier
|
||||
|
||||
\begin{lemma} (Compositionality)
|
||||
Let $p=p_1p_2$ be an arbitrary stack machine program, subdivided into arbitrary subprograms $p_1$ and $p_2$. Then,
|
||||
|
||||
\[
|
||||
\forall c_1, c_2:\;\trans{c_1}{p}{c_2}\;\Leftrightarrow\;\exists c^\prime:\; \trans{c_1}{p_1}{c^\prime} \wedge \trans{c^\prime}{p_2}{c_2}
|
||||
\]
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Induction on the structure of $p$.
|
||||
|
||||
\textbf{Base case}. The base case $p=\epsilon$ is trivial: use the rule \rulename{Stop$_{SM}$} and get $c^\prime=c_2=c_1$.
|
||||
|
||||
\textbf{Induction step}. When $p=\iota p^\prime$, then there are two cases:
|
||||
|
||||
\begin{itemize}
|
||||
\item Either $p_1=\epsilon$, then $c^\prime=c_1$ trivially by the rule \rulename{Stop$_{SM}$}, and we're done.
|
||||
\item Otherwise $p_1=\iota p_1^\prime$, and, thus, $p=\iota p_1^\prime p_2$. In order to prove the lemma, we need to prove two implications:
|
||||
\begin{enumerate}
|
||||
\item Let $\trans{c_1}{p=\iota p_1^\prime p_2}{c_2}$. Technically, we need here to consider three cases (one for each type of the instruction
|
||||
$\iota$), but in all cases the outcome would be the same: we have the picture
|
||||
|
||||
\[
|
||||
\trule{\trans{c^{\prime\prime}}{p_1^\prime p_2}{c_2}}{\trans{c_1}{p=\iota p_1^\prime p_2}{c_2}}
|
||||
\]
|
||||
|
||||
where $c^{\prime\prime}$ depends only on $\iota$ and $c_1$. Since $p_1^\prime p_2$ is shorter, than $p$, we can apply the induction hypothesis, which gives us a
|
||||
configuration $c^\prime$, such, that $\trans{c^{\prime\prime}}{p_1^\prime}{c^\prime}$ and $\trans{c^\prime}{p_2}{c_2}$. The observation $\trans{c_1}{\iota p_1^\prime}{c^\prime}$
|
||||
concludes the proof (note, we implicitly use determinism here).
|
||||
\item Let there exists $c^\prime$, such that $\trans{c_1}{\iota p_1^\prime}{c^\prime}$ and $\trans{c^\prime}{p_2}{c_2}$. From the first relation we have
|
||||
|
||||
\[
|
||||
\trule{\trans{c^{\prime\prime}}{p_1^\prime}{c^\prime}}{\trans{c_1}{\iota p_1^\prime}{c^\prime}}
|
||||
\]
|
||||
|
||||
where $c^{\prime\prime}$ depends only on $\iota$ and $c_1$. Since $p_1^\prime p_2$ is shorter, than $p$, we can apply the induction hypothesis, which
|
||||
gives us $\trans{c^{\prime\prime}}{p_1^\prime p_2}{c_2}$, and, thus, $\trans{c_1}{\iota p_1^\prime p_2}{c_2}$ (again, we implicitly use determinism here).
|
||||
\end{enumerate}
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}(Correctness of compilation)
|
||||
Let $e\in\mathscr E$ be arbitrary expression, $s$~--- arbitrary state, and $st$~--- arbitrary stack. Then
|
||||
|
||||
\[
|
||||
\trans{\inbr{st, s}}{\sembr{e}^{\mathscr E}_{comp}}{\inbr{(\sembr{e}\,s)::st, s}}\; \mbox{iff} \; (\sembr{e}\,s)\; \mbox{is defined}
|
||||
\]
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Induction on the structure of $e$.
|
||||
|
||||
\textbf{Base case}. There are two subcases:
|
||||
|
||||
\begin{enumerate}
|
||||
\item $e$ is a constant $z$. Then:
|
||||
\begin{itemize}
|
||||
\item $\sembr{e}\,s=z$ for each state $s$;
|
||||
\item \mbox{$\sembr{e}^{\mathscr E}_{comp}=[\llang{CONST z}]$};
|
||||
\item $\trans{\inbr{st, s}}{[\llang{CONST z}]}{\inbr{z::st, s}}$ for arbitrary $st$ and $s$.
|
||||
\end{itemize}
|
||||
|
||||
This concludes the first base case.
|
||||
|
||||
\item $e$ is a variable $x$. Then:
|
||||
\begin{itemize}
|
||||
\item $\sembr{s}\,s=s\,x$ for each state $s$, such that $s\,x$ is defined;
|
||||
\item \mbox{$\sembr{e}^{\mathscr E}_{comp}=[\llang{LD x}]$};
|
||||
\item $\trans{\inbr{st, s}}{[\llang{CONST z}]}{\inbr{(s\,x)::st, s}}$ for arbitrary $st$ and arbitrary $s$, such that $s\, x$ is defined.
|
||||
\end{itemize}
|
||||
|
||||
This concludes the second base case.
|
||||
\end{enumerate}
|
||||
|
||||
\textbf{Induction step}. Let $e$ be $A\otimes B$. Then:
|
||||
|
||||
\begin{itemize}
|
||||
\item $\sembr{A\otimes B}s=\sembr{A}s\oplus\sembr{B}s$ for each state $s$, such that both $\sembr{A}s$ and $\sembr{B}s$ are defined;
|
||||
\item $\sembr{A\otimes B}^{\mathscr E}_{comp}=\sembr{A}^{\mathscr E}_{comp}\llang{@}\sembr{B}^{\mathscr E}_{comp}\llang{@[BINOP $\oplus$]}$;
|
||||
\item by the inductive hypothesis, for arbitrary $st$ and $s$
|
||||
|
||||
\[
|
||||
\trans{\inbr{st, s}}{\sembr{A}^{\mathscr E}_{comp}}{\inbr{(\sembr{A}s)::st, s}} \mbox{iff} \; (\sembr{A}\,s)\; \mbox{is defined}
|
||||
\]
|
||||
|
||||
and
|
||||
|
||||
\[
|
||||
\trans{\inbr{(\sembr{A}s)::st, s}}{\sembr{B}^{\mathscr E}_{comp}}{\inbr{(\sembr{B}s)::(\sembr{A}s)::st, s}} \mbox{iff} \; (\sembr{A}\,s) \;\mbox{and}\; (\sembr{A}\,s) \; \mbox{are defined}
|
||||
\]
|
||||
|
||||
Taking into account the semantics of \llang{BINOP $\otimes$} and applying the compositionality lemma, the theorem follows.
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
TESTS=test001 test002 test003 test004 test005 test006 test007 test008 test009 test010 test011 test012
|
||||
TESTS=test001 test002 test003 test004 test005 test006 test007 test008 test009 test010 test011 test012 test015 test017 test018 test019 test020 test021 test022 test023
|
||||
|
||||
RC=../src/rc.opt
|
||||
|
||||
|
|
|
|||
12
regression/test012.expr
Normal file
12
regression/test012.expr
Normal file
|
|
@ -0,0 +1,12 @@
|
|||
read (n);
|
||||
while n >= 0 do
|
||||
if n > 1
|
||||
then
|
||||
write (0);
|
||||
if n == 3 then write (0) else write (1) fi
|
||||
else
|
||||
write (1);
|
||||
if n > 0 then write (0) else write (1) fi
|
||||
fi;
|
||||
n := n - 1
|
||||
od
|
||||
1
regression/test012.input
Normal file
1
regression/test012.input
Normal file
|
|
@ -0,0 +1 @@
|
|||
3
|
||||
20
regression/test015.expr
Normal file
20
regression/test015.expr
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
s := 0;
|
||||
read (n);
|
||||
p := 2;
|
||||
|
||||
while n > 0 do
|
||||
c := 2;
|
||||
f := 1;
|
||||
|
||||
while c*c <= p && f do
|
||||
f := (p % c) != 0;
|
||||
c := c + 1
|
||||
od;
|
||||
|
||||
if f != 0 then
|
||||
if n == 1 then write (p) else skip fi;
|
||||
n := n - 1
|
||||
else skip fi;
|
||||
|
||||
p := p + 1
|
||||
od
|
||||
1
regression/test015.input
Normal file
1
regression/test015.input
Normal file
|
|
@ -0,0 +1 @@
|
|||
1000
|
||||
15
regression/test017.expr
Normal file
15
regression/test017.expr
Normal file
|
|
@ -0,0 +1,15 @@
|
|||
read (n);
|
||||
|
||||
i := 2;
|
||||
fib_1 := 1;
|
||||
fib_2 := 1;
|
||||
fib := 1;
|
||||
|
||||
while i < n do
|
||||
fib := fib_1 + fib_2;
|
||||
fib_2 := fib_1;
|
||||
fib_1 := fib;
|
||||
i := i+1
|
||||
od;
|
||||
|
||||
write (fib)
|
||||
1
regression/test017.input
Normal file
1
regression/test017.input
Normal file
|
|
@ -0,0 +1 @@
|
|||
20
|
||||
43
regression/test018.expr
Normal file
43
regression/test018.expr
Normal file
|
|
@ -0,0 +1,43 @@
|
|||
read (n);
|
||||
|
||||
c := 1;
|
||||
p := 2;
|
||||
|
||||
while c do
|
||||
|
||||
cc := 1;
|
||||
|
||||
while cc do
|
||||
q := 2;
|
||||
|
||||
while q * q <= p && cc do
|
||||
cc := p % q != 0;
|
||||
q := q + 1
|
||||
od;
|
||||
|
||||
if cc then cc := 0 else p := p + 1; cc := 1 fi
|
||||
|
||||
od;
|
||||
|
||||
d := p;
|
||||
i := 0;
|
||||
|
||||
q := n / d;
|
||||
m := n % d;
|
||||
|
||||
while q > 0 && m == 0 do
|
||||
i := i + 1;
|
||||
d := d * p;
|
||||
m := n % d;
|
||||
if m == 0 then q := n / d else skip fi
|
||||
od;
|
||||
|
||||
write (p);
|
||||
write (i);
|
||||
|
||||
n := n / (d / p);
|
||||
p := p + 1;
|
||||
c := n != 1
|
||||
|
||||
od
|
||||
|
||||
1
regression/test018.input
Normal file
1
regression/test018.input
Normal file
|
|
@ -0,0 +1 @@
|
|||
23409
|
||||
13
regression/test019.expr
Normal file
13
regression/test019.expr
Normal file
|
|
@ -0,0 +1,13 @@
|
|||
i := 0;
|
||||
s := 0;
|
||||
|
||||
for i := 0, i < 100, i := i+1
|
||||
do
|
||||
for j := 0, j < 100, j := j+1
|
||||
do
|
||||
s := s + j
|
||||
od;
|
||||
s := s + i
|
||||
od;
|
||||
|
||||
write (s)
|
||||
0
regression/test019.input
Normal file
0
regression/test019.input
Normal file
20
regression/test020.expr
Normal file
20
regression/test020.expr
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
s := 0;
|
||||
read (n);
|
||||
p := 2;
|
||||
|
||||
while n > 0 do
|
||||
c := 2;
|
||||
f := 1;
|
||||
|
||||
for c := 2, c*c <= p && f, c := c+1
|
||||
do
|
||||
f := p % c != 0
|
||||
od;
|
||||
|
||||
if f != 0 then
|
||||
if n == 1 then write (p) fi;
|
||||
n := n - 1
|
||||
fi;
|
||||
|
||||
p := p + 1
|
||||
od
|
||||
1
regression/test020.input
Normal file
1
regression/test020.input
Normal file
|
|
@ -0,0 +1 @@
|
|||
1000
|
||||
9
regression/test021.expr
Normal file
9
regression/test021.expr
Normal file
|
|
@ -0,0 +1,9 @@
|
|||
read (n);
|
||||
f := 1;
|
||||
|
||||
for skip, n >= 1, n := n-1
|
||||
do
|
||||
f := f * n
|
||||
od;
|
||||
|
||||
write (f)
|
||||
1
regression/test021.input
Normal file
1
regression/test021.input
Normal file
|
|
@ -0,0 +1 @@
|
|||
10
|
||||
14
regression/test022.expr
Normal file
14
regression/test022.expr
Normal file
|
|
@ -0,0 +1,14 @@
|
|||
read (n);
|
||||
|
||||
fib_1 := 1;
|
||||
fib_2 := 1;
|
||||
fib := 1;
|
||||
|
||||
for i := 2, i < n, i := i+1
|
||||
do
|
||||
fib := fib_1 + fib_2;
|
||||
fib_2 := fib_1;
|
||||
fib_1 := fib
|
||||
od;
|
||||
|
||||
write (fib)
|
||||
1
regression/test022.input
Normal file
1
regression/test022.input
Normal file
|
|
@ -0,0 +1 @@
|
|||
20
|
||||
8
regression/test023.expr
Normal file
8
regression/test023.expr
Normal file
|
|
@ -0,0 +1,8 @@
|
|||
s := 0;
|
||||
|
||||
repeat
|
||||
read (n);
|
||||
s := s + n
|
||||
until n == 0;
|
||||
|
||||
write (s)
|
||||
6
regression/test023.input
Normal file
6
regression/test023.input
Normal file
|
|
@ -0,0 +1,6 @@
|
|||
5
|
||||
6
|
||||
7
|
||||
8
|
||||
9
|
||||
0
|
||||
|
|
@ -6,7 +6,7 @@ let parse infile =
|
|||
(object
|
||||
inherit Matcher.t s
|
||||
inherit Util.Lexers.decimal s
|
||||
inherit Util.Lexers.ident ["read"; "write"; "skip"; "if"; "then"; "else"; "fi"; "while"; "do"; "od"] s
|
||||
inherit Util.Lexers.ident ["read"; "write"; "skip"; "if"; "then"; "else"; "elif"; "fi"; "while"; "do"; "od"; "repeat"; "until"; "for"] s
|
||||
inherit Util.Lexers.skip [
|
||||
Matcher.Skip.whitespaces " \t\n";
|
||||
Matcher.Skip.lineComment "--";
|
||||
|
|
|
|||
|
|
@ -113,7 +113,8 @@ module Stmt =
|
|||
(* composition *) | Seq of t * t
|
||||
(* empty statement *) | Skip
|
||||
(* conditional *) | If of Expr.t * t * t
|
||||
(* loop *) | While of Expr.t * t with show
|
||||
(* loop with a pre-condition *) | While of Expr.t * t
|
||||
(* loop with a post-condition *) | Repeat of t * Expr.t with show
|
||||
|
||||
(* The type of configuration: a state, an input stream, an output stream *)
|
||||
type config = Expr.state * int list * int list
|
||||
|
|
@ -133,6 +134,7 @@ module Stmt =
|
|||
| Skip -> conf
|
||||
| If (e, s1, s2) -> eval conf (if Expr.eval st e <> 0 then s1 else s2)
|
||||
| While (e, s) -> if Expr.eval st e = 0 then conf else eval (eval conf s) stmt
|
||||
| Repeat (s, e) -> let (st, _, _) as conf' = eval conf s in if Expr.eval st e = 0 then eval conf' stmt else conf'
|
||||
|
||||
(* Statement parser *)
|
||||
ostap (
|
||||
|
|
@ -140,12 +142,27 @@ module Stmt =
|
|||
s:stmt ";" ss:parse {Seq (s, ss)}
|
||||
| stmt;
|
||||
stmt:
|
||||
%"read" "(" x:IDENT ")" {Read x}
|
||||
| %"write" "(" e:!(Expr.parse) ")" {Write e}
|
||||
| %"skip" {Skip}
|
||||
| %"if" e:!(Expr.parse) %"then" s1:parse %"else" s2:parse %"fi" {If (e, s1, s2)}
|
||||
| %"while" e:!(Expr.parse) %"do" s:parse %"od" {While (e, s)}
|
||||
| x:IDENT ":=" e:!(Expr.parse) {Assign (x, e)}
|
||||
%"read" "(" x:IDENT ")" {Read x}
|
||||
| %"write" "(" e:!(Expr.parse) ")" {Write e}
|
||||
| %"skip" {Skip}
|
||||
| %"if" e:!(Expr.parse)
|
||||
%"then" the:parse
|
||||
elif:(%"elif" !(Expr.parse) %"then" parse)*
|
||||
els:(%"else" parse)?
|
||||
%"fi" {
|
||||
If (e, the,
|
||||
List.fold_right
|
||||
(fun (e, t) elif -> If (e, t, elif))
|
||||
elif
|
||||
(match els with None -> Skip | Some s -> s)
|
||||
)
|
||||
}
|
||||
| %"while" e:!(Expr.parse) %"do" s:parse %"od"{While (e, s)}
|
||||
| %"for" i:parse "," c:!(Expr.parse) "," s:parse %"do" b:parse %"od" {
|
||||
Seq (i, While (c, Seq (b, s)))
|
||||
}
|
||||
| %"repeat" s:parse %"until" e:!(Expr.parse) {Repeat (s, e)}
|
||||
| x:IDENT ":=" e:!(Expr.parse) {Assign (x, e)}
|
||||
)
|
||||
|
||||
end
|
||||
|
|
|
|||
|
|
@ -92,6 +92,11 @@ let compile p =
|
|||
let cond, env = env#get_label in
|
||||
let env, _, s = compile' cond env s in
|
||||
env, false, [JMP cond; LABEL loop] @ s @ [LABEL cond] @ expr c @ [CJMP ("nz", loop)]
|
||||
|
||||
| Stmt.Repeat (s, c) -> let loop , env = env#get_label in
|
||||
let check, env = env#get_label in
|
||||
let env , flag, body = compile' check env s in
|
||||
env, false, [LABEL loop] @ body @ (if flag then [LABEL check] else []) @ (expr c) @ [CJMP ("z", loop)]
|
||||
in
|
||||
let env =
|
||||
object
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue