Style refactorings for X86_64

This commit is contained in:
Roman Venediktov 2024-07-02 12:58:26 +02:00
parent d19851fcdf
commit bd7779172b
2 changed files with 121 additions and 114 deletions

View file

@ -6,6 +6,9 @@ class options args =
let dump_sm = 0b010 in
let dump_source = 0b100 in
(* Kakadu: binary masks are cool for C code, but for OCaml I don't see any reason to save memory like this *)
let runtime_path_ =
match Sys.getenv_opt "LAMA" with Some s -> s | None -> Stdpath.path
in
let help_string =
"Lama compiler. (C) JetBrains Reserach, 2017-2020.\n"
^ "Usage: lamac <options> <input file>\n\n"
@ -30,7 +33,8 @@ class options args =
val i = ref 1
val infile = ref (None : string option)
val outfile = ref (None : string option)
val paths = ref [ X86_64.get_std_path () ]
val runtime_path = runtime_path_
val paths = ref [ runtime_path_ ]
val mode = ref (`Default : [ `Default | `Eval | `SM | `Compile | `BC ])
val curdir = Unix.getcwd ()
val debug = ref false
@ -54,12 +58,14 @@ class options args =
match self#peek with
| None ->
raise
(Commandline_error "File name expected after '-o' specifier")
(Commandline_error
"File name expected after '-o' specifier")
| Some fname -> self#set_outfile fname)
| "-I" -> (
match self#peek with
| None ->
raise (Commandline_error "Path expected after '-I' specifier")
raise
(Commandline_error "Path expected after '-I' specifier")
| Some path -> self#add_include_path path)
| "-s" -> self#set_mode `SM
| "-b" -> self#set_mode `BC
@ -74,7 +80,8 @@ class options args =
if opt.[0] = '-' then
raise
(Commandline_error
(Printf.sprintf "Invalid command line specifier ('%s')" opt))
(Printf.sprintf "Invalid command line specifier ('%s')"
opt))
else self#set_infile opt);
loop ()
| None -> ()
@ -138,6 +145,7 @@ class options args =
method get_help = !help
method get_include_paths = !paths
method get_runtime_path = runtime_path
method basename =
Filename.chop_suffix (Filename.basename self#get_infile) ".lama"

View file

@ -97,32 +97,38 @@ end = struct
let extra_caller_saved_registers = [| r10; r11; r12; r13; r14 |]
end
(* We need to know the word size to calculate offsets correctly *)
let word_size = 8
(* Attributes of the named memory location addressing *)
(* External symbols have to be acessed through plt or GOTPCREL.
While internal just using rip-based addressing. *)
type externality = I (** Internal *) | E (** External *)
(* External functions have to pe acessed through plt.
While data through GOTPCREL. *)
type data_kind = F (** Function *) | D (** Data *)
(* For functions and string their value is their address.
While for numbers is the value on this address. *)
type addressed = A (** Address *) | V (** Value *)
(* We need to distinguish the following operand types: *)
type opnd =
| R of Register.t (* hard register *)
| S of int (* a position on the hardware stack *)
| M of
(* a named memory location *)
data_kind
* externality
* addressed
* string
| C of string (* a named constant *)
| L of int (* an immediate operand *)
| I of int * opnd (* an indirect operand with offset *)
| R of Register.t (* Hard register *)
| S of int (* Position on the hardware stack *)
| M of data_kind * externality * addressed * string
(* Named memory location *)
| C of string (* Named constant *)
| L of int (* Immediate operand *)
| I of int * opnd (* Indirect operand with offset *)
type argument_location = Register of opnd | Stack
(* We need to know the word size to calculate offsets correctly *)
let word_size = 8
let as_register opnd =
match opnd with R r -> r | _ -> failwith "as_register: not a register"
type argument_location = Register of opnd | Stack
let rec show_opnd = function
| R r -> Printf.sprintf "R %s" (Register.show r)
| S i -> Printf.sprintf "S %d" i
@ -136,8 +142,6 @@ let rec show_opnd = function
(match a with A -> "Address" | V -> "Value")
s
(* We need to know the word size to calculate offsets correctly *)
(* For convenience we define the following synonyms for the registers: *)
let rax = R Registers.rax
let rdx = R Registers.rdx
@ -155,8 +159,9 @@ let r13 = R Registers.r13
let r14 = R Registers.r14
let r15 = R Registers.r15
(* Value that could be used to fill unused stack locations *)
let filler = M (D, I, A, "filler")
(* Value that could be used to fill unused stack locations.
Garbage is not allowed as it will affect GC. *)
let filler = M (D, I, V, "filler")
(* Now x86 instruction (we do not need all of them): *)
type instr =
@ -206,10 +211,10 @@ type instr =
| Repmovsl
(* Instruction printer *)
let show instr =
let stack_offset i =
if i >= 0 then (i + 1) * word_size else (-i + 1) * word_size
let show instr =
in
let rec opnd = function
| R r -> Register.show r
| S i ->
@ -242,8 +247,6 @@ let show instr =
| Binop (op, s1, s2) ->
Printf.sprintf "\t%s\t%s,\t%s" (binop op) (opnd s1) (opnd s2)
| Mov ((M (_, _, A, _) as x), y) | Lea (x, y) ->
(* TODO: It looks like a bad design.
Maybe we should introduce eopnd with the boolean if we referenceing an address but not a value *)
Printf.sprintf "\tleaq\t%s,\t%s" (opnd x) (opnd y)
| Mov (s1, s2) -> Printf.sprintf "\tmovq\t%s,\t%s" (opnd s1) (opnd s2)
| Push s -> Printf.sprintf "\tpushq\t%s" (opnd s)
@ -262,15 +265,18 @@ let show instr =
| Sar1 s -> Printf.sprintf "\tsarq\t%s" (opnd s)
| Repmovsl -> Printf.sprintf "\trep movsq\t"
(* Most of instructions have constraints on memory operands *)
let in_memory = function M _ | S _ | I _ -> true | C _ | R _ | L _ -> false
let big_numeric_literal = function L num -> num > 0xFFFFFFFF | _ -> false
let mov x s =
(* Numeric literals with more than 32 bits cannot ne directly moved to memory location *)
let big_numeric_literal = function L num -> num > 0xFFFFFFFF | _ -> false in
if x = s then []
else if (in_memory x && in_memory s) || big_numeric_literal x then
[ Mov (x, rax); Mov (rax, s) ]
else [ Mov (x, s) ]
(* Boxing for numeric values *)
let box n = (n lsl 1) lor 1
(*
@ -289,10 +295,12 @@ let compile_binop env op =
| _ -> failwith "unknown operator"
in
let x, y = env#peek2 in
(* For binary operations requiring no extra register *)
let without_extra op =
let _x, env = env#pop in
(env, op ())
in
(* For binary operations requiring rdx *)
let with_rdx op =
if not env#rdx_in_use then
let _x, env = env#pop in
@ -304,6 +312,7 @@ let compile_binop env op =
let code = op rdx in
(env, [ Mov (rdx, extra) ] @ code @ [ Mov (extra, rdx) ])
in
(* For binary operations requiring any extra register *)
let with_extra op =
let extra, env = env#allocate in
let _extra, env = env#pop in
@ -417,6 +426,10 @@ let compile_binop env op =
| _ ->
failwith (Printf.sprintf "Unexpected pattern: %s: %d" __FILE__ __LINE__)
(* For pointers to be marked by GC as alive they have to be located on the stack.
As we do not have control where does the C compiler locate them in the moment of GC,
we have to explicitly locate them on the stack.
And to the runtime function we are passing a reference to their location. *)
let safepoint_functions =
[
labeled "s__Infix_58";
@ -428,14 +441,18 @@ let safepoint_functions =
labeled_builtin "closure";
labeled_builtin "array";
labeled_builtin "sexp";
labeled "i__Infix_4343"
labeled "i__Infix_4343";
(* "makeArray"; not required as do not have ptr arguments *)
(* "makeString"; not required as do not have ptr arguments *)
(* "getEnv", not required as do not have ptr arguments *)
(* "set_args", not required as do not have ptr arguments *);
(* "set_args", not required as do not have ptr arguments *)
(* Lsprintf, or Bsprintf is an extra dirty hack that probably works *)
]
(* For vararg functions where we pass them in the stdlib function using va_list,
we have to unbox values to print them correctly.
For this we have special assemply functions in `printf.S`.
We additionally pass them amount of arguments to unbox using register r11. *)
let vararg_functions =
[
(labeled "printf", 1);
@ -453,6 +470,11 @@ let compile_call env ?fname nargs tail =
| _ -> fname)
fname
in
let safepoint_call =
match fname with
| Some fname -> List.mem fname safepoint_functions
| None -> false
in
let tail_call_optimization_applicable =
let allowed_function =
match fname with
@ -552,11 +574,6 @@ let compile_call env ?fname nargs tail =
push_registers @ align_prologue @ setup_args_code @ add_printf_count
@ call @ align_epilogue @ List.rev pop_registers @ move_result )
in
let safepoint_call =
match fname with
| Some fname -> List.mem fname safepoint_functions
| None -> false
in
let compile_safe_point_call env fname nargs =
let setup_arguments env nargs =
let rec pop_arguments env acc = function
@ -623,14 +640,12 @@ let compile_call env ?fname nargs tail =
the updated environment and the list of x86 instructions
*)
let compile cmd env imports code =
(* SM.print_prg code;
flush stdout; *)
let rec compile' env scode =
match scode with
| [] -> (env, [])
| instr :: scode' ->
(* Stack state for comment in generated code. TODO: add debug flag *)
let stack = "" (* env#show_stack*) in
(* Printf.printf "insn=%s, stack=%s\n%!" (GT.show(insn) instr) (env#show_stack); *)
let env', code' =
if env#is_barrier then
match instr with
@ -753,7 +768,7 @@ let compile cmd env imports code =
Mov (rsi, r13);
Mov (rcx, r14);
Mov (rsp, rdi);
Mov (filler, rsi);
Lea (filler, rsi);
Mov (C env#allocated_size, rcx);
Repmovsl;
Mov (r12, rdi);
@ -762,18 +777,18 @@ let compile cmd env imports code =
]
@ (if f = "main" then
[
(* Align stack as main function is the only function that could be called without alignment. TODO *)
(* Align stack as `main` function could be called misaligned *)
Mov (L 0xF, rax);
Binop ("test", rsp, rax);
CJmp ("z", "ALIGNED");
Push filler;
Label "ALIGNED";
(* Initialize gc and arguments *)
Push (R Registers.rdi);
Push (R Registers.rsi);
Push rdi;
Push rsi;
Call "__gc_init";
Pop (R Registers.rsi);
Pop (R Registers.rdi);
Pop rsi;
Pop rdi;
Call "set_args";
]
else [])
@ -968,7 +983,7 @@ module SymbolicStack : sig
end = struct
type t = { state : Register.t AbstractSymbolicStack.t; nlocals : int }
(* romanv: add free args registers? *)
(* TODO: romanv: add free args registers? *)
let empty _nargs nlocals =
{
state = AbstractSymbolicStack.empty Registers.extra_caller_saved_registers;
@ -1017,14 +1032,7 @@ class env prg =
let argument_registers =
Array.map (fun r -> R r) Registers.argument_registers
in
let num_of_argument_registers = Array.length argument_registers in
(* let make_assoc l i =
List.combine l (List.init (List.length l) (fun x -> x + i))
in *)
(* let rec assoc x = function
| [] -> raise Not_found
| l :: ls -> ( try List.assoc x l with Not_found -> assoc x ls)
in *)
let argument_registers_size = Array.length argument_registers in
object (self)
inherit SM.indexer prg
val globals = S.empty (* a set of global variables *)
@ -1086,23 +1094,17 @@ class env prg =
method drop_stack = {<stack = SymbolicStack.empty nargs static_size>}
(* associates a stack to a label *)
method set_stack l =
(*Printf.printf "Setting stack for %s\n" l;*)
{<stackmap = M.add l stack stackmap>}
method set_stack l = {<stackmap = M.add l stack stackmap>}
(* retrieves a stack for a label *)
method retrieve_stack l =
(*Printf.printf "Retrieving stack for %s\n" l;*)
try {<stack = M.find l stackmap>} with Not_found -> self
(* checks if there is a stack for a label *)
method has_stack l =
(*Printf.printf "Retrieving stack for %s\n" l;*)
M.mem l stackmap
method has_stack l = M.mem l stackmap
method is_external name = S.mem name externs
(* gets a name for a global variable *)
(* gets a location for a variable *)
method loc x =
match x with
| Value.Global name ->
@ -1113,8 +1115,8 @@ class env prg =
let ext = if self#is_external name then E else I in
M (F, ext, A, name)
| Value.Local i -> S i
| Value.Arg i when i < num_of_argument_registers -> argument_registers.(i)
| Value.Arg i -> S (-(i - num_of_argument_registers) - 1)
| Value.Arg i when i < argument_registers_size -> argument_registers.(i)
| Value.Arg i -> S (-(i - argument_registers_size) - 1)
| Value.Access i -> I (word_size * (i + 1), r15)
(* allocates a fresh position on a symbolic stack *)
@ -1134,14 +1136,14 @@ class env prg =
method rdx_in_use = nargs > 2
method arguments_locations n =
if n < num_of_argument_registers then
if n < argument_registers_size then
( Array.to_list (Array.sub argument_registers 0 n)
|> List.map (fun r -> Register r),
0 )
else
( (Array.to_list argument_registers |> List.map (fun r -> Register r))
@ List.init (n - num_of_argument_registers) (fun _ -> Stack),
n - num_of_argument_registers )
@ List.init (n - argument_registers_size) (fun _ -> Stack),
n - argument_registers_size )
(* peeks the top of the stack (the stack does not change) *)
method peek = SymbolicStack.peek stack
@ -1244,9 +1246,10 @@ class env prg =
] )
end
(* Generates an assembler text for a program: first compiles the program into
the stack code, then generates x86 assember code, then prints the assembler file
*)
(* Generates an assembler text for a program:
first compiles the program into the stack code,
then generates x86 assember code,
then prints the assembler file *)
let genasm cmd prog =
let sm = SM.compile cmd prog in
let env, code = compile cmd (new env sm) (fst (fst prog)) sm in
@ -1302,10 +1305,7 @@ let genasm cmd prog =
@ code);
Buffer.contents asm
let get_std_path () =
match Sys.getenv_opt "LAMA" with Some s -> s | None -> Stdpath.path
(* Builds a program: generates the assembler file and compiles it with the gcc toolchain *)
(* Builds a program: generates the assembler file and compiles it with the clang toolchain *)
let build cmd prog =
let find_objects imports paths =
let module S = Set.Make (String) in
@ -1328,7 +1328,6 @@ let build cmd prog =
in
cmd#dump_file "s" (genasm cmd prog);
cmd#dump_file "i" (Interface.gen prog);
let inc = get_std_path () in
let compiler = "clang" in
let compiler_flags, linker_flags =
match os with Darwin -> ("-arch x86_64", "-ld_classic") | Linux -> ("", "")
@ -1345,7 +1344,7 @@ let build cmd prog =
let gcc_cmdline =
Printf.sprintf "%s %s %s %s %s %s.s %s %s/runtime.a" compiler
compiler_flags linker_flags cmd#get_debug cmd#get_output_option
cmd#basename (Buffer.contents buf) inc
cmd#basename (Buffer.contents buf) cmd#get_runtime_path
in
Sys.command gcc_cmdline
| `Compile ->