mirror of
https://github.com/ProgramSnail/Lama.git
synced 2025-12-06 23:08:46 +00:00
Sync
This commit is contained in:
parent
a133fe9ca9
commit
ffe6740e6d
1 changed files with 261 additions and 0 deletions
261
doc/02.tex
Normal file
261
doc/02.tex
Normal file
|
|
@ -0,0 +1,261 @@
|
||||||
|
\documentclass{article}
|
||||||
|
|
||||||
|
\usepackage{amssymb, amsmath}
|
||||||
|
\usepackage{alltt}
|
||||||
|
\usepackage{pslatex}
|
||||||
|
\usepackage{epigraph}
|
||||||
|
\usepackage{verbatim}
|
||||||
|
\usepackage{latexsym}
|
||||||
|
\usepackage{array}
|
||||||
|
\usepackage{comment}
|
||||||
|
\usepackage{makeidx}
|
||||||
|
\usepackage{listings}
|
||||||
|
\usepackage{indentfirst}
|
||||||
|
\usepackage{verbatim}
|
||||||
|
\usepackage{color}
|
||||||
|
\usepackage{url}
|
||||||
|
\usepackage{xspace}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
\usepackage{stmaryrd}
|
||||||
|
\usepackage{amsmath, amsthm, amssymb}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{euscript}
|
||||||
|
\usepackage{mathtools}
|
||||||
|
\usepackage{mathrsfs}
|
||||||
|
\usepackage{multirow,bigdelim}
|
||||||
|
|
||||||
|
\makeatletter
|
||||||
|
|
||||||
|
\makeatother
|
||||||
|
|
||||||
|
\definecolor{shadecolor}{gray}{1.00}
|
||||||
|
\definecolor{darkgray}{gray}{0.30}
|
||||||
|
|
||||||
|
\def\transarrow{\xrightarrow}
|
||||||
|
\newcommand{\setarrow}[1]{\def\transarrow{#1}}
|
||||||
|
|
||||||
|
\def\padding{\phantom{X}}
|
||||||
|
\newcommand{\setpadding}[1]{\def\padding{#1}}
|
||||||
|
|
||||||
|
\newcommand{\trule}[2]{\frac{#1}{#2}}
|
||||||
|
\newcommand{\crule}[3]{\frac{#1}{#2},\;{#3}}
|
||||||
|
\newcommand{\withenv}[2]{{#1}\vdash{#2}}
|
||||||
|
\newcommand{\trans}[3]{{#1}\transarrow{\padding#2\padding}{#3}}
|
||||||
|
\newcommand{\ctrans}[4]{{#1}\transarrow{\padding#2\padding}{#3},\;{#4}}
|
||||||
|
\newcommand{\llang}[1]{\mbox{\lstinline[mathescape]|#1|}}
|
||||||
|
\newcommand{\pair}[2]{\inbr{{#1}\mid{#2}}}
|
||||||
|
\newcommand{\inbr}[1]{\left<{#1}\right>}
|
||||||
|
\newcommand{\highlight}[1]{\color{red}{#1}}
|
||||||
|
\newcommand{\ruleno}[1]{\eqno[\scriptsize\textsc{#1}]}
|
||||||
|
\newcommand{\rulename}[1]{\textsc{#1}}
|
||||||
|
\newcommand{\inmath}[1]{\mbox{$#1$}}
|
||||||
|
\newcommand{\lfp}[1]{fix_{#1}}
|
||||||
|
\newcommand{\gfp}[1]{Fix_{#1}}
|
||||||
|
\newcommand{\vsep}{\vspace{-2mm}}
|
||||||
|
\newcommand{\supp}[1]{\scriptsize{#1}}
|
||||||
|
\newcommand{\sembr}[1]{\llbracket{#1}\rrbracket}
|
||||||
|
\newcommand{\cd}[1]{\texttt{#1}}
|
||||||
|
\newcommand{\free}[1]{\boxed{#1}}
|
||||||
|
\newcommand{\binds}{\;\mapsto\;}
|
||||||
|
\newcommand{\dbi}[1]{\mbox{\bf{#1}}}
|
||||||
|
\newcommand{\sv}[1]{\mbox{\textbf{#1}}}
|
||||||
|
\newcommand{\bnd}[2]{{#1}\mkern-9mu\binds\mkern-9mu{#2}}
|
||||||
|
|
||||||
|
\newcommand{\meta}[1]{{\mathcal{#1}}}
|
||||||
|
\renewcommand{\emptyset}{\varnothing}
|
||||||
|
|
||||||
|
\definecolor{light-gray}{gray}{0.90}
|
||||||
|
\newcommand{\graybox}[1]{\colorbox{light-gray}{#1}}
|
||||||
|
|
||||||
|
\lstdefinelanguage{ocaml}{
|
||||||
|
keywords={let, begin, end, in, match, type, and, fun,
|
||||||
|
function, try, with, class, object, method, of, rec, repeat, until,
|
||||||
|
while, not, do, done, as, val, inherit, module, sig, @type, struct,
|
||||||
|
if, then, else, open, virtual, new, fresh},
|
||||||
|
sensitive=true,
|
||||||
|
%basicstyle=\small,
|
||||||
|
commentstyle=\scriptsize\rmfamily,
|
||||||
|
keywordstyle=\ttfamily\bfseries,
|
||||||
|
identifierstyle=\ttfamily,
|
||||||
|
basewidth={0.5em,0.5em},
|
||||||
|
columns=fixed,
|
||||||
|
fontadjust=true,
|
||||||
|
literate={fun}{{$\lambda$}}1 {->}{{$\to$}}3 {===}{{$\equiv$}}1 {=/=}{{$\not\equiv$}}1 {|>}{{$\triangleright$}}3 {\&\&\&}{{$\wedge$}}2 {|||}{{$\vee$}}2 {^}{{$\uparrow$}}1,
|
||||||
|
morecomment=[s]{(*}{*)}
|
||||||
|
}
|
||||||
|
|
||||||
|
\lstset{
|
||||||
|
mathescape=true,
|
||||||
|
%basicstyle=\small,
|
||||||
|
identifierstyle=\ttfamily,
|
||||||
|
keywordstyle=\bfseries,
|
||||||
|
commentstyle=\scriptsize\rmfamily,
|
||||||
|
basewidth={0.5em,0.5em},
|
||||||
|
fontadjust=true,
|
||||||
|
escapechar=!,
|
||||||
|
language=ocaml
|
||||||
|
}
|
||||||
|
|
||||||
|
\sloppy
|
||||||
|
|
||||||
|
\newcommand{\ocaml}{\texttt{OCaml}\xspace}
|
||||||
|
|
||||||
|
\theoremstyle{definition}
|
||||||
|
|
||||||
|
\title{Statements, Stack Machine, Stack Machine Compiler\\
|
||||||
|
(the first draft)
|
||||||
|
}
|
||||||
|
|
||||||
|
\author{Dmitry Boulytchev}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
\section{Statements}
|
||||||
|
|
||||||
|
More interesting language~--- a language of simple statements:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{array}{rcl}
|
||||||
|
\mathscr S & = & \mathscr X \mbox{\lstinline|:=|} \;\mathscr E \\
|
||||||
|
& & \mbox{\lstinline|read (|} \mathscr X \mbox{\lstinline|)|} \\
|
||||||
|
& & \mbox{\lstinline|write (|} \mathscr E \mbox{\lstinline|)|} \\
|
||||||
|
& & \mathscr S \mbox{\lstinline|;|} \mathscr S
|
||||||
|
\end{array}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Here $\mathscr E, \mathscr X$ stand for the sets of expressions and variables, as in the previous lecture.
|
||||||
|
|
||||||
|
Again, we define the semantics for this language
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sembr{\bullet}_{\mathscr S} : \mathscr S \mapsto \mathbb Z^* \to \mathbb Z^*
|
||||||
|
$$
|
||||||
|
|
||||||
|
with the semantic domain of partial functions from integer strings to integer strings. This time we will
|
||||||
|
use \emph{big-step operational semantics}: we define a ternary relation ``$\Rightarrow$''
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Rightarrow \subseteq \mathscr C \times \mathscr S \times \mathscr C
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $\mathscr C = \Sigma \times \mathbb Z^* \times \mathbb Z^*$~--- a set of all configurations during a
|
||||||
|
program execution. We will write $c_1\xRightarrow{S}c_2$ instead of $(c_1, S, c_2)\in\Rightarrow$ and informally
|
||||||
|
interpret the former as ``the execution of a statement $S$ in a configuration $c_1$ completes with the configuration
|
||||||
|
$c_2$''. The components of a configuration are state, which binds (some) variables to their values, and input and
|
||||||
|
output streams, represented as (finite) strings of integers.
|
||||||
|
|
||||||
|
The relation ``$\Rightarrow$'' is defined by the following deductive system (see Fig.~\ref{bs_stmt}). The first
|
||||||
|
three rules are \emph{axioms} as they do not have any premises. Note, according to these rules sometimes a program
|
||||||
|
cannot do a step in a given configuration: a value of an expression can be undefined in a given state in rules
|
||||||
|
$\rulename{Assign}$ and $\rulename{Write}$, and there can be no input value in rule $\rulename{Read}$. This style of
|
||||||
|
a semantics description is called big-step operational semantics, since the results of a computation are
|
||||||
|
immediately observable at the right hand side of ``$\Rightarrow$'' and, thus, the computation is performed in
|
||||||
|
a single ``big'' step. And, again, this style of a semantic description can be used to easily implement a
|
||||||
|
reference interpreter.
|
||||||
|
|
||||||
|
With the relation ``$\Rightarrow$'' defined we can abbreviate the ``surface'' semantics for the language of statements:
|
||||||
|
|
||||||
|
\setarrow{\xRightarrow}
|
||||||
|
|
||||||
|
\[
|
||||||
|
\forall S\in\mathscr S,\,\forall i\in\mathbb Z^*\;:\;\sembr{S}_{\mathscr S} i = o \Leftrightarrow \trans{\inbr{\bot, i, \epsilon}}{S}{\inbr{\_, \_, o}}
|
||||||
|
\]
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[t]
|
||||||
|
\[\trans{\inbr{s, i, o}}{\llang{x := $\;\;e$}}{\inbr{s[x\gets\sembr{e}_{\mathscr E}\;s], i, o}}\ruleno{Assign}\]
|
||||||
|
\[\trans{\inbr{s, z\llang{::}i, o}}{\llang{read ($x$)}}{\inbr{s[x\gets z], i, o}}\ruleno{Read}\]
|
||||||
|
\[\trans{\inbr{s, i, o}}{\llang{write ($e$)}}{\inbr{s, i, o \llang{@} \sembr{e}_{\mathscr E}\;s}}\ruleno{Write}\]
|
||||||
|
\[\trule{\trans{c_1}{S_1}{c^\prime},\;\trans{c^\prime}{S_2}{c_2}}{\trans{c_1}{S_1\llang{;}S_2}{c_2}}\ruleno{Seq}\]
|
||||||
|
\caption{Big-step operational semantics for statements}
|
||||||
|
\label{bs_stmt}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\section{Stack Machine}
|
||||||
|
|
||||||
|
Stack machine is a simple abstract computational device, which can be used as a convenient model to constructively describe
|
||||||
|
the compilation process.
|
||||||
|
|
||||||
|
In short, stack machine operates on the same configurations, as the language of statements, plus a stack of integers. The
|
||||||
|
computation, performed by the stack machine, is controlled by a program, which is described as follows:
|
||||||
|
|
||||||
|
\[
|
||||||
|
\begin{array}{rcl}
|
||||||
|
\mathscr I & = & \llang{BINOP $\;\otimes$} \\
|
||||||
|
& & \llang{CONST $\;\mathbb N$} \\
|
||||||
|
& & \llang{READ} \\
|
||||||
|
& & \llang{WRITE} \\
|
||||||
|
& & \llang{LD $\;\mathscr X$} \\
|
||||||
|
& & \llang{ST $\;\mathscr X$} \\
|
||||||
|
\mathscr P & = & \epsilon \\
|
||||||
|
& & \mathscr I\mathscr P
|
||||||
|
\end{array}
|
||||||
|
\]
|
||||||
|
|
||||||
|
Here the syntax category $\mathscr I$ stands for \emph{instructions}, $\mathscr P$~--- for \emph{programs}; thus, a program is a finite
|
||||||
|
string of instructions.
|
||||||
|
|
||||||
|
The semantics of stack machine program can be described, again, in the form of big-step operational semantics. This time the set of
|
||||||
|
stack machine configurations is
|
||||||
|
|
||||||
|
\[
|
||||||
|
\mathscr C_{SM} = \mathbb Z^* \times \mathscr C
|
||||||
|
\]
|
||||||
|
|
||||||
|
where the first component is a stack, and the second~--- a configuration as in the semantics of statement language. The rules are shown on Fig.~\ref{bs_sm}; note,
|
||||||
|
now we have one axiom and six inference rules (one per instruction).
|
||||||
|
|
||||||
|
As for the statement, with the aid of the relation ``$\Rightarrow$'' we can define the surface semantics of stack machine:
|
||||||
|
|
||||||
|
\[
|
||||||
|
\forall p\in\mathscr P,\,\forall i\in\mathbb Z^*\;:\;\sembr{p}_{SM}\;i=o\Leftrightarrow\trans{\inbr{\epsilon, \inbr{\bot, i, \epsilon}}}{p}{\inbr{\_, \inbr{\_, \_, o}}}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\begin{figure}[t]
|
||||||
|
\[\trans{c}{\epsilon}{c}\ruleno{Stop$_{SM}$}\]
|
||||||
|
\[\trule{\trans{\inbr{(x\oplus y)\llang{::}st, c}}{p}{c^\prime}}{\trans{\inbr{y\llang{::}x\llang{::}st, c}}{(\llang{BINOP $\;\otimes$})p}{c^\prime}}\ruleno{Binop$_{SM}$}\]
|
||||||
|
\[\trule{\trans{\inbr{z\llang{::}st, c}}{p}{c^\prime}}{\trans{\inbr{st, c}}{(\llang{CONST $\;z$})p}{c^\prime}}\ruleno{Const$_{SM}$}\]
|
||||||
|
\[\trule{\trans{\inbr{z\llang{::}st, \inbr{s, i, o}}}{p}{c^\prime}}{\trans{\inbr{st, \inbr{s, z\llang{::}i, o}}}{(\llang{READ})p}{c^\prime}}\ruleno{Read$_{SM}$}\]
|
||||||
|
\[\trule{\trans{\inbr{st, \inbr{s, i, o\llang{@}z}}}{p}{c^\prime}}{\trans{\inbr{z\llang{::}st, \inbr{s, i, o}}}{(\llang{WRITE})p}{c^\prime}}\ruleno{Write$_{SM}$}\]
|
||||||
|
\[\trule{\trans{\inbr{(s\;x)\llang{::}st, \inbr{s, i, o}}}{p}{c^\prime}}{\trans{\inbr{st, \inbr{s, i, o}}}{(\llang{LD $\;x$})p}{c^\prime}}\ruleno{LD$_{SM}$}\]
|
||||||
|
\[\trule{\trans{\inbr{st, \inbr{s[x\gets z], i, o}}}{p}{c^\prime}}{\trans{\inbr{z\llang{::}st, \inbr{s, i, o}}}{(\llang{ST $\;x$})p}{c^\prime}}\ruleno{ST$_{SM}$}\]
|
||||||
|
\caption{Big-step operational semantics for stack machine}
|
||||||
|
\label{bs_sm}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\section{A Compiler for the Stack Machine}
|
||||||
|
|
||||||
|
A compiler of the statement language into the stack machine is a total mapping
|
||||||
|
|
||||||
|
\[
|
||||||
|
\sembr{\bullet}_{comp} : \mathscr S \mapsto \mathscr P
|
||||||
|
\]
|
||||||
|
|
||||||
|
We can describe the compiler in the form of denotational semantics for the source language. In fact, we can treat the compiler as a \emph{static} semantics, which
|
||||||
|
maps each program into its stack machine equivalent.
|
||||||
|
|
||||||
|
As the source language consists of two syntactic categories (expressions and statments), the compiler has to be ``bootstrapped'' from the compiler for expressions
|
||||||
|
$\sembr{\bullet}^{\mathscr E}_{comp}$:
|
||||||
|
|
||||||
|
\[
|
||||||
|
\begin{array}{rcl}
|
||||||
|
\sembr{x}^{\mathscr E}_{comp}&=&\llang{[LD $\;x$]}\\
|
||||||
|
\sembr{n}^{\mathscr E}_{comp}&=&\llang{[CONST $\;n$]}\\
|
||||||
|
\sembr{A\otimes B}^{\mathscr E}_{comp}&=&\sembr{A}^{\mathscr E}_{comp}\llang{@}\sembr{B}^{\mathscr E}_{comp}\llang{@}(\llang{BINOP $\;\otimes$})
|
||||||
|
\end{array}
|
||||||
|
\]
|
||||||
|
|
||||||
|
And now the main dish:
|
||||||
|
|
||||||
|
\[
|
||||||
|
\begin{array}{rcl}
|
||||||
|
\sembr{\llang{$x$ := $e$}}_{comp}&=&\sembr{e}^{\mathscr E}_{comp}\llang{@}\llang{[ST $\;x$]}\\
|
||||||
|
\sembr{\llang{read ($x$)}}_{comp}&=&\llang{[READ; ST $\;x$]}\\
|
||||||
|
\sembr{\llang{write ($e$)}}_{comp}&=&\sembr{e}^{\mathscr E}_{comp}\llang{@}\llang{[WRITE]}\\
|
||||||
|
\sembr{\llang{$S_1$;$\;S_2$}}_{comp}&=&\sembr{S_1}_{comp}\llang{@}\sembr{S_2}_{comp}
|
||||||
|
\end{array}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end{document}
|
||||||
Loading…
Add table
Add a link
Reference in a new issue