open GT open Language (* X86 codegeneration interface *) (* The registers: *) (* let regs = [| "%ebx"; "%ecx"; "%esi"; "%edi"; "%eax"; "%edx"; "%ebp"; "%esp" |] *) (* Registers %rbp, %rbx and %r12 through %r15 “belong” to the calling function and the called function is required to preserve their values. *) let temp_regs = [| "%r10"; "%r11"; "%r12"; "%r13"; "%r14"; "%r15"; "%rbx" |] (* "%r16"; "%r17"; "%r18"; "%r19"; "%r20"; "%r21"; "%r22"; "%r23"; "%r24"; "%r25"; "%r26"; "%r27"; "%r28"; "%r29"; "%r30"; "%r31"; *) (* rbx --- callee-saved *) (* callee-saved *) (* let callee_saved_regs = [| "%rbx"; "%r15"; "%r12"; "%r13"; "%r14" |] *) let callee_saved_regs = [||] (* rax preserved for return value and temporal values *) (* rdx used to pass 3rd argument to functions; 2nd return register (we do not use it) *) (* rbp --- base pointer; callee-saved *) let args_regs = [| "%rdi"; "%rsi"; "%rdx"; "%rcx"; "%r8"; "%r9" |] let regs = Array.append (Array.append (Array.append temp_regs callee_saved_regs) args_regs) [| "%rax"; "%rbp"; "%rsp" |] (* We can not freely operate with all register; only 3 by now *) (* let num_of_regs = Array.length regs - 5 *) (* let num_of_regs = Array.length regs *) let num_of_regs = Array.length temp_regs let max_free_arg_regs = Array.length args_regs (* Simpliest algo: 1. Temporary registers are used for register allocation 1.1. We save all alive temp registers before function call (I guess) 2. args_regs are used to pass arguments 3. rax is used for return value and special temporary register *) (* We need to know the word size to calculate offsets correctly *) (* let word_size = 4 *) let word_size = 8 (* We need to distinguish the following operand types: *) type opnd = | R of int (* hard register *) | S of int (* a position on the hardware stack *) | C (* a saved closure *) | M of string (* a named memory location *) | L of int (* an immediate operand *) | I of int * opnd (* an indirect operand with offset *) [@@deriving gt ~options:{ show }] let show_opnd = show opnd (* For convenience we define the following synonyms for the registers: *) (* TODO: fix *) let args_regs_ind = [| Array.length regs - 9; Array.length regs - 8; Array.length regs - 7; Array.length regs - 6; Array.length regs - 5; Array.length regs - 4; |] let r10 = R 0 let rbx = R 6 let rcx = R (Array.length regs - 6) let r8 = R (Array.length regs - 5) let r9 = R (Array.length regs - 4) let rsi = R (Array.length regs - 8) let rdi = R (Array.length regs - 9) let rax = R (Array.length regs - 3) let rdx = R (Array.length regs - 7) let rbp = R (Array.length regs - 2) let rsp = R (Array.length regs - 1) (* Now x86 instruction (we do not need all of them): *) type instr = (* copies a value from the first to the second operand *) | Mov of opnd * opnd (* loads an address of the first operand into the second *) | Lea of opnd * opnd (* makes a binary operation; note, the first operand *) | Binop of string * opnd * opnd (* designates x86 operator, not the source language one *) (* x86 integer division, see instruction set reference *) | IDiv of opnd (* see instruction set reference *) | Cltd (* sets a value from flags; the first operand is the *) | Set of string * string (* suffix, which determines the value being set, the *) (* the second --- (sub)register name *) (* pushes the operand on the hardware stack *) | Push of opnd (* pops from the hardware stack to the operand *) | Pop of opnd (* call a function by a name *) | Call of string (* call a function by indirect address *) | CallI of opnd (* returns from a function *) | Ret (* a label in the code *) | Label of string (* a conditional jump *) | CJmp of string * string (* a non-conditional jump *) | Jmp of string (* directive *) | Meta of string (* arithmetic correction: decrement *) | Dec of opnd (* arithmetic correction: or 0x0001 *) | Or1 of opnd (* arithmetic correction: shl 1 *) | Sal1 of opnd (* arithmetic correction: shr 1 *) | Sar1 of opnd | Repmovsl (* Instruction printer *) let stack_offset i = if i >= 0 then (i + 1) * word_size else 8 + ((-i - 1) * word_size) let show instr = let rec opnd = function | R i -> regs.(i) (* | C -> "4(%ebp)" *) | C -> Printf.sprintf "%d(%%rbp)" word_size | S i -> if i >= 0 then Printf.sprintf "-%d(%%rbp)" (stack_offset i) else Printf.sprintf "%d(%%rbp)" (stack_offset i) | M x -> x | L i -> Printf.sprintf "$%d" i | I (0, x) -> Printf.sprintf "(%s)" (opnd x) | I (n, x) -> Printf.sprintf "%d(%s)" n (opnd x) in let binop = function | "+" -> "add" | "-" -> "sub" | "*" -> "imul" | "&&" -> "and" | "!!" -> "or" | "^" -> "xor" | "cmp" -> "cmp" | "test" -> "test" | _ -> failwith "unknown binary operator" in match instr with | Cltd -> "\tcqo" | Set (suf, s) -> Printf.sprintf "\tset%s\t%s" suf s | IDiv s1 -> Printf.sprintf "\tidivq\t%s" (opnd s1) | Binop (op, s1, s2) -> Printf.sprintf "\t%s\t%s,\t%s" (binop op) (opnd s1) (opnd s2) | Mov (s1, s2) -> Printf.sprintf "\tmovq\t%s,\t%s" (opnd s1) (opnd s2) | Lea (x, y) -> Printf.sprintf "\tlea\t%s,\t%s" (opnd x) (opnd y) | Push s -> Printf.sprintf "\tpushq\t%s" (opnd s) | Pop s -> Printf.sprintf "\tpopq\t%s" (opnd s) | Ret -> "\tret" | Call p -> Printf.sprintf "\tcall\t%s" p | CallI o -> Printf.sprintf "\tcall\t*(%s)" (opnd o) | Label l -> Printf.sprintf "%s:\n" l | Jmp l -> Printf.sprintf "\tjmp\t%s" l | CJmp (s, l) -> Printf.sprintf "\tj%s\t%s" s l | Meta s -> Printf.sprintf "%s\n" s | Dec s -> Printf.sprintf "\tdec\t%s" (opnd s) | Or1 s -> Printf.sprintf "\tor\t$0x0001,\t%s" (opnd s) | Sal1 s -> Printf.sprintf "\tsal\t%s" (opnd s) | Sar1 s -> Printf.sprintf "\tsar\t%s" (opnd s) | Repmovsl -> Printf.sprintf "\trep movsq\t" (* Opening stack machine to use instructions without fully qualified names *) open SM (* Symbolic stack machine evaluator compile : env -> prg -> env * instr list Take an environment, a stack machine program, and returns a pair --- the updated environment and the list of x86 instructions *) let compile cmd env imports code = (* SM.print_prg code; *) flush stdout; let suffix = function | "<" -> "l" | "<=" -> "le" | "==" -> "e" | "!=" -> "ne" | ">=" -> "ge" | ">" -> "g" | _ -> failwith "unknown operator" in let box n = (n lsl 1) lor 1 in let rec compile' env scode = let on_stack = function S _ -> true | _ -> false in let mov x s = if on_stack x && on_stack s then [ Mov (x, rax); Mov (rax, s) ] else [ Mov (x, s) ] in let callc env n tail = failwith (Printf.sprintf "Not implemented %s: %d" __FILE__ __LINE__) in let trololo env n tail = let tail = tail && env#nargs = n in if tail then let rec push_args env acc = function | 0 -> (env, acc) | n -> let x, env = env#pop in if x = env#loc (Value.Arg (n - 1)) then push_args env acc (n - 1) else push_args env (mov x (env#loc (Value.Arg (n - 1))) @ acc) (n - 1) in let env, pushs = push_args env [] n in let closure, env = env#pop in let _, env = env#allocate in ( env, pushs @ [ Mov (closure, rdx); Mov (I (0, rdx), rax); Mov (rbp, rsp); Pop rbp; ] @ (if env#has_closure then [ Pop rbx ] else []) @ [ Jmp "*%eax" ] ) (* UGLY!!! *) else let pushr, popr = List.split @@ List.map (fun r -> (Push r, Pop r)) (env#live_registers n) in let pushr, popr = (env#save_closure @ pushr, env#rest_closure @ popr) in let env, code = let rec push_args env acc = function | 0 -> (env, acc) | n -> let x, env = env#pop in push_args env (Push x :: acc) (n - 1) in let env, pushs = push_args env [] n in let pushs = List.rev pushs in let closure, env = env#pop in let call_closure = if on_stack closure then [ Mov (closure, rdx); Mov (rdx, rax); CallI rax ] else [ Mov (closure, rdx); CallI closure ] in ( env, pushr @ pushs @ call_closure @ [ Binop ("+", L (word_size * List.length pushs), rsp) ] @ List.rev popr ) in let y, env = env#allocate in (env, code @ [ Mov (rax, y) ]) in let call env f n tail = let tail = tail && env#nargs = n && f.[0] <> '.' in let f = match f.[0] with | '.' -> "B" ^ String.sub f 1 (String.length f - 1) | _ -> f in (* TODO *) (* if tail then (* failwith (Printf.sprintf "Not implemented %s: %d" __FILE__ __LINE__) *) let rec push_args env acc = function | 0 -> (env, acc) | n -> (* TODO *) let x, env = env#pop in if x = env#loc (Value.Arg (n - 1)) then push_args env acc (n - 1) else push_args env (mov x (env#loc (Value.Arg (n - 1))) @ acc) (n - 1) in let env, pushs = push_args env [] n in let _, env = env#allocate in ( env, pushs @ [ Mov (rbp, rsp); Pop rbp ] @ (if env#has_closure then [ Pop rbx ] else []) @ [ Jmp f ] ) else *) let pushr, popr = List.split @@ List.map (fun r -> (Push r, Pop r)) (env#live_registers n) in let pushr, popr = (env#save_closure @ pushr, env#rest_closure @ popr) in let env, code = let stack_slots, env, pushs = let rec popn env acc = function | 0 -> (env, acc) | n -> let t, env = env#pop in popn env (t :: acc) (n - 1) in let push_args2 env args = let rec push_args' env acc stack_slots_acc = function | [] -> (stack_slots_acc, env, acc) | arg :: args -> ( let y, env = env#pop_for_arg_2 in match y with | R _ -> push_args' env (Mov (arg, y) :: acc) stack_slots_acc args | L 0 -> push_args' env (Push arg :: acc) (stack_slots_acc + 1) args | _ -> failwith (Printf.sprintf "Should never happend %s: %d" __FILE__ __LINE__)) in push_args' env [] 0 args in let fix_locs locs = match f with | "Bsta" -> List.rev locs | "Barray" -> L (box n) :: locs | "Bsexp" -> L (box n) :: locs | _ -> locs in (*TODO B functions!*) let env, locs = popn env [] n in let locs = fix_locs locs in let stack_slots, env, pushsc = push_args2 env locs in (stack_slots, env, pushsc) in (* (* TODO: wrong arguments order *) let push_args env acc n = let rec push_args' env acc = function | 0 -> (env, acc) | 1 when String.equal f "Bsexp" -> let y, env = env#pop_for_arg 1 in (env, Mov (L (box n), y) :: acc) | n -> ( let x, env = env#pop in let y, env = env#pop_for_arg n in match y with | R _ -> push_args' env (Mov (x, y) :: acc) (n - 1) | _ -> failwith (Printf.sprintf "Not implemented %s: %d" __FILE__ __LINE__) (* push_args env (Push x :: acc) (n - 1)) *)) in match f with | "Bsexp" -> push_args' env [] (n + 1) | _ -> push_args' env [] n in let env, pushs = push_args env [] n in (* TODO: rdi!!!! look above let pushs = match f with | "Barray" -> List.rev @@ (Push (L (box n)) :: pushs) (* | "Bsexp" -> List.rev @@ (Push (L (box n)) :: pushs) *) | "Bsexp" -> List.rev @@ (Mov (L (box n), rdi) :: pushs) | "Bsta" -> pushs | _ -> List.rev pushs in *) *) (* TODO: we have to know if stack is aligned *) let aligned, align_prologue, align_epilogue = ( List.length pushr mod 2 == 0, [ Binop ("-", L 8, rsp) ], [ Binop ("+", L 8, rsp) ] ) in let push_arg_registers = [ Push rdi; Push rsi; Push rdx; Push rcx; Push r8; Push r9 ] in let pop_arg_registers = [ Pop r9; Pop r8; Pop rcx; Pop rdx; Pop rsi; Pop rdi ] in let nullify_argument_registers, _ = Array.fold_left (fun (acc, i) a -> if i < max_free_arg_regs - env#get_n_free_arg_regs then (acc, i + 1) else (acc @ [ R a ], i + 1)) ([], 0) args_regs_ind in ( env#restore_n_free_arg_regs, pushr (* @ List.map (fun a -> Mov (L 0, a)) nullify_argument_registers *) @ push_arg_registers @ (if not aligned then align_prologue else []) @ pushs (* TODO *) (* @ [ Call f; Binop ("+", L (word_size * List.length pushs), rsp) ] *) (* TODO: stack has to be aligned by 16!!! i.e. two words *) (* @ [ Push (L 0); Call f; Binop ("+", L word_size, rsp) ] *) @ [ Call f ] (* @ (if env#get_n_free_arg_regs == 0 then [ Binop ( "+", L ((word_size * List.length pushs) - max_free_arg_regs), rsp ); ] else []) *) @ (if not aligned then align_epilogue else []) @ (if stack_slots != 0 then [ Binop ("+", L (word_size * stack_slots), rsp) ] else []) @ pop_arg_registers @ List.rev popr ) in let y, env = env#allocate in (env, code @ [ Mov (rax, y) ]) in match scode with | [] -> (env, []) | instr :: scode' -> let stack = "" (* env#show_stack*) in (* Printf.printf "insn=%s, stack=%s\n%!" (GT.show(insn) instr) (env#show_stack); *) let env', code' = if env#is_barrier then match instr with | LABEL s -> if env#has_stack s then (env#drop_barrier#retrieve_stack s, [ Label s ]) else (env#drop_stack, []) | FLABEL s -> (env#drop_barrier, [ Label s ]) | SLABEL s -> (env, [ Label s ]) | _ -> (env, []) else match instr with | PUBLIC name -> (env#register_public name, []) | EXTERN name -> (env#register_extern name, []) | IMPORT _ -> (env, []) | CLOSURE (name, closure) -> let pushr, popr = List.split @@ List.map (fun r -> (Push r, Pop r)) (env#live_registers 0) in let closure_len = List.length closure in let push_closure = List.map (fun d -> Push (env#loc d)) @@ List.rev closure in let s, env = env#allocate in ( env, pushr @ push_closure @ [ Push (M ("$" ^ name)); Push (L (box closure_len)); Call "Bclosure"; Binop ("+", L (word_size * (closure_len + 2)), rsp); Mov (rax, s); ] @ List.rev popr @ env#reload_closure ) | CONST n -> let s, env' = env#allocate in (env', [ Mov (L (box n), s) ]) | STRING s -> let s, env = env#string s in let l, env = env#allocate in let env, call = call env ".string" 1 false in (env, Mov (M ("$" ^ s), l) :: call) | LDA x -> let s, env' = (env#variable x)#allocate in let s', env'' = env'#allocate in (env'', [ Lea (env'#loc x, rax); Mov (rax, s); Mov (rax, s') ]) | LD x -> ( let s, env' = (env#variable x)#allocate in ( env', match s with | S _ | M _ -> [ Mov (env'#loc x, rax); Mov (rax, s) ] | _ -> [ Mov (env'#loc x, s) ] )) | ST x -> ( let env' = env#variable x in let s = env'#peek in ( env', match s with | S _ | M _ -> [ Mov (s, rax); Mov (rax, env'#loc x) ] | _ -> [ Mov (s, env'#loc x) ] )) | STA -> call env ".sta" 3 false | STI -> ( let v, x, env' = env#pop2 in ( env'#push x, match x with | S _ | M _ -> [ Mov (v, rdx); Mov (x, rax); Mov (rdx, I (0, rax)); Mov (rdx, x); ] @ env#reload_closure | _ -> [ Mov (v, rax); Mov (rax, I (0, x)); Mov (rax, x) ] )) | BINOP op -> ( let x, y, env' = env#pop2 in ( env'#push y, (* (match op with |"<" | "<=" | "==" | "!=" | ">=" | ">" -> [Push (eax); Push (edx); Mov (y, eax); Binop("&&", L(1), eax); Mov (x, edx); Binop("&&", L(1), edx); Binop("cmp", eax, edx); CJmp ("nz", "_ERROR2"); Pop (edx); Pop (eax)] (* | "+" | "-" | "*" | "/" -> *) | _ -> [Mov (y, eax); Binop("&&", L(1), eax); Binop("cmp", L(0), eax); CJmp ("z", "_ERROR"); Mov (x, eax); Binop("&&", L(1), eax); Binop("cmp", L(0), eax); CJmp ("z", "_ERROR")] | _ -> []) @ *) match op with | "/" -> [ Mov (y, rax); Sar1 rax; Binop ("^", rdx, rdx); Cltd; Sar1 x; IDiv x; Sal1 rax; Or1 rax; Mov (rax, y); ] (* [ Mov (y, rax); Sar1 rax; Cltd; (* x := x >> 1 ?? *) Sar1 x; (*!!!*) IDiv x; Sal1 rax; Or1 rax; Mov (rax, y); ] *) | "%" -> [ Mov (y, rax); Sar1 rax; Cltd; (* x := x >> 1 ?? *) Sar1 x; (*!!!*) IDiv x; Sal1 rdx; Or1 rdx; Mov (rdx, y); ] @ env#reload_closure | "<" | "<=" | "==" | "!=" | ">=" | ">" -> ( match x with | M _ | S _ -> [ Binop ("^", rax, rax); Mov (x, rdx); Binop ("cmp", rdx, y); Set (suffix op, "%al"); Sal1 rax; Or1 rax; Mov (rax, y); ] @ env#reload_closure | _ -> [ Binop ("^", rax, rax); (* TODO: WTF?!?: why are they in wrong order?!? *) Binop ("cmp", x, y); (* Binop ("cmp", y, x); *) Set (suffix op, "%al"); Sal1 rax; Or1 rax; Mov (rax, y); ]) | "*" -> if on_stack y then [ Dec y; Mov (x, rax); Sar1 rax; Binop (op, y, rax); Or1 rax; Mov (rax, y); ] else [ Dec y; Mov (x, rax); Sar1 rax; Binop (op, rax, y); Or1 y; ] | "&&" -> [ Dec x; (*!!!*) Mov (x, rax); Binop (op, x, rax); Mov (L 0, rax); Set ("ne", "%al"); Dec y; (*!!!*) Mov (y, rdx); Binop (op, y, rdx); Mov (L 0, rdx); Set ("ne", "%dl"); Binop (op, rdx, rax); Set ("ne", "%al"); Sal1 rax; Or1 rax; Mov (rax, y); ] @ env#reload_closure | "!!" -> [ Mov (y, rax); Sar1 rax; Sar1 x; (*!!!*) Binop (op, x, rax); Mov (L 0, rax); Set ("ne", "%al"); Sal1 rax; Or1 rax; Mov (rax, y); ] | "+" -> if on_stack x && on_stack y then [ Mov (x, rax); Dec rax; Binop ("+", rax, y) ] else [ Binop (op, x, y); Dec y ] | "-" -> if on_stack x && on_stack y then [ Mov (x, rax); Binop (op, rax, y); Or1 y ] else [ Binop (op, x, y); Or1 y ] | _ -> failwith (Printf.sprintf "Unexpected pattern: %s: %d" __FILE__ __LINE__) )) | LABEL s | FLABEL s | SLABEL s -> (env, [ Label s ]) | JMP l -> ((env#set_stack l)#set_barrier, [ Jmp l ]) | CJMP (s, l) -> let x, env = env#pop in ( env#set_stack l, [ Sar1 x; (*!!!*) Binop ("cmp", L 0, x); CJmp (s, l) ] ) | BEGIN (f, nargs, nlocals, closure, args, scopes) -> let rec stabs_scope scope = let names = List.map (fun (name, index) -> Meta (Printf.sprintf "\t.stabs \"%s:1\",128,0,0,-%d" name (stack_offset index))) scope.names in names @ (if names = [] then [] else [ Meta (Printf.sprintf "\t.stabn 192,0,0,%s-%s" scope.blab f); ]) @ (List.flatten @@ List.map stabs_scope scope.subs) @ if names = [] then [] else [ Meta (Printf.sprintf "\t.stabn 224,0,0,%s-%s" scope.elab f); ] in let name = if f.[0] = 'L' then String.sub f 1 (String.length f - 1) else f in env#assert_empty_stack; let has_closure = closure <> [] in let env = env#enter f nargs nlocals has_closure in ( env, [ Meta (Printf.sprintf "\t.type %s, @function" name) ] @ (if f = "main" then [] else [ Meta (Printf.sprintf "\t.stabs \"%s:F1\",36,0,0,%s" name f); ] @ List.mapi (fun i a -> Meta (Printf.sprintf "\t.stabs \"%s:p1\",160,0,0,%d" a ((i * 4) + 8))) args @ List.flatten @@ List.map stabs_scope scopes) @ [ Meta "\t.cfi_startproc" ] @ (if has_closure then [ Push rdx ] else []) @ (if f = cmd#topname then [ Mov (M "_init", rax); Binop ("test", rax, rax); CJmp ("z", "_continue"); Ret; Label "_ERROR"; Call "Lbinoperror"; Ret; Label "_ERROR2"; Call "Lbinoperror2"; Ret; Label "_continue"; Mov (L 1, M "_init"); ] else []) @ [ Push rbp; Meta ("\t.cfi_def_cfa_offset\t" ^ if has_closure then "12" else "8"); Meta ("\t.cfi_offset 5, -" ^ if has_closure then "12" else "8"); Mov (rsp, rbp); Meta "\t.cfi_def_cfa_register\t5"; Binop ("-", M ("$" ^ env#lsize), rsp); (*TODO*) (* Mov (rsp, edi); Mov (M "$filler", rsi); Mov (M ("$" ^ env#allocated_size), rcx); Repmovsl; *) ] @ (if f = "main" then (* TODO: numbers! *) [ Call "__gc_init"; (* Push (I (12, rbp)); Push (I (8, rbp)); Call "set_args"; Binop ("+", L 8, rsp); *) ] else []) @ if f = cmd#topname then List.map (fun i -> Call ("init" ^ i)) (List.filter (fun i -> i <> "Std") imports) else [] ) | END -> let x, env = env#pop in env#assert_empty_stack; let name = env#fname in ( env#leave, [ Mov (x, rax); (*!!*) Label env#epilogue; Mov (rbp, rsp); Pop rbp; ] @ env#rest_closure @ (if name = "main" then [ Binop ("^", rax, rax) ] else []) @ [ Meta "\t.cfi_restore\t5"; Meta "\t.cfi_def_cfa\t4, 4"; Ret; Meta "\t.cfi_endproc"; Meta (Printf.sprintf "\t.set\t%s,\t%d" env#lsize (if env#allocated * word_size mod 16 == 0 then env#allocated * word_size else 8 + (env#allocated * word_size))); Meta (Printf.sprintf "\t.set\t%s,\t%d" env#allocated_size env#allocated); Meta (Printf.sprintf "\t.size %s, .-%s" name name); ] ) | RET -> let x = env#peek in (env, [ Mov (x, rax); Jmp env#epilogue ]) | ELEM -> call env ".elem" 2 false | CALL (f, n, tail) -> call env f n tail | CALLC (n, tail) -> callc env n tail | SEXP (t, n) -> let s, env = env#allocate in let env, code = call env ".sexp" (n + 1) false in (env, [ Mov (L (box (env#hash t)), s) ] @ code) | DROP -> (snd env#pop, []) | DUP -> let x = env#peek in let s, env = env#allocate in (env, mov x s) | SWAP -> let x, y = env#peek2 in (env, [ Push x; Push y; Pop x; Pop y ]) | TAG (t, n) -> let s1, env = env#allocate in let s2, env = env#allocate in let env, code = call env ".tag" 3 false in ( env, [ Mov (L (box (env#hash t)), s1); Mov (L (box n), s2) ] @ code ) | ARRAY n -> let s, env = env#allocate in let env, code = call env ".array_patt" 2 false in (env, [ Mov (L (box n), s) ] @ code) | PATT StrCmp -> call env ".string_patt" 2 false | PATT patt -> call env (match patt with | Boxed -> ".boxed_patt" | UnBoxed -> ".unboxed_patt" | Array -> ".array_tag_patt" | String -> ".string_tag_patt" | Sexp -> ".sexp_tag_patt" | Closure -> ".closure_tag_patt" | StrCmp -> failwith (Printf.sprintf "Unexpected pattern: StrCmp %s: %d" __FILE__ __LINE__)) 1 false | LINE line -> env#gen_line line | FAIL ((line, col), value) -> let v, env = if value then (env#peek, env) else env#pop in let s, env = env#string cmd#get_infile in ( env, [ Push (L (box col)); Push (L (box line)); Push (M ("$" ^ s)); Push v; Call "Bmatch_failure"; Binop ("+", L (4 * word_size), rsp); ] ) | i -> invalid_arg (Printf.sprintf "invalid SM insn: %s\n" (GT.show insn i)) in let env'', code'' = compile' env' scode' in ( env'', [ Meta (Printf.sprintf "# %s / %s" (GT.show SM.insn instr) stack) ] @ code' @ code'' ) in compile' env code (* A set of strings *) module S = Set.Make (String) (* A map indexed by strings *) module M = Map.Make (String) (* Environment implementation *) class env prg = let chars = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'" in (* let make_assoc l i = List.combine l (List.init (List.length l) (fun x -> x + i)) in *) (* let rec assoc x = function | [] -> raise Not_found | l :: ls -> ( try List.assoc x l with Not_found -> assoc x ls) in *) object (self) inherit SM.indexer prg val globals = S.empty (* a set of global variables *) val stringm = M.empty (* a string map *) val scount = 0 (* string count *) val stack_slots = 0 (* maximal number of stack positions *) val n_free_arg_regs = Array.length args_regs (* number of free argument refisters *) method get_n_free_arg_regs = n_free_arg_regs method restore_n_free_arg_regs = {} val static_size = 0 (* static data size *) val stack = [] (* symbolic stack *) val nargs = 0 (* number of function arguments *) val locals = [] (* function local variables *) val fname = "" (* function name *) val stackmap = M.empty (* labels to stack map *) val barrier = false (* barrier condition *) val max_locals_size = 0 val has_closure = false val publics = S.empty val externs = S.empty val nlabels = 0 val first_line = true method publics = S.elements publics method register_public name = {} method register_extern name = {} method max_locals_size = max_locals_size method has_closure = has_closure method save_closure = if has_closure then [ Push rdx ] else [] method rest_closure = if has_closure then [ Pop rdx ] else [] method reload_closure = if has_closure then [ Mov (C (*S 0*), rdx) ] else [] method fname = fname method leave = if stack_slots > max_locals_size then {} else self method show_stack = GT.show list (GT.show opnd) stack method print_locals = Printf.printf "LOCALS: size = %d\n" static_size; List.iter (fun l -> Printf.printf "("; List.iter (fun (a, i) -> Printf.printf "%s=%d " a i) l; Printf.printf ")\n") locals; Printf.printf "END LOCALS\n" (* Assert empty stack *) method assert_empty_stack = assert (stack = []) (* check barrier condition *) method is_barrier = barrier (* set barrier *) method set_barrier = {} (* drop barrier *) method drop_barrier = {} (* drop stack *) method drop_stack = {} (* associates a stack to a label *) method set_stack l = (*Printf.printf "Setting stack for %s\n" l;*) {} (* retrieves a stack for a label *) method retrieve_stack l = (*Printf.printf "Retrieving stack for %s\n" l;*) try {} with Not_found -> self (* checks if there is a stack for a label *) method has_stack l = (*Printf.printf "Retrieving stack for %s\n" l;*) M.mem l stackmap (* gets a name for a global variable *) method loc x = match x with | Value.Global name -> M ("global_" ^ name) | Value.Fun name -> M ("$" ^ name) | Value.Local i -> S i (* | Value.Arg i -> S (-(i + if has_closure then 2 else 1)) *) | Value.Arg 0 -> rdi | Value.Arg 1 -> rsi | Value.Arg 2 -> rdx | Value.Arg 3 -> rcx | Value.Arg 4 -> r8 | Value.Arg 5 -> r9 | Value.Arg i -> S (-(i - 5 + if has_closure then 2 else 1)) | Value.Access i -> I (word_size * (i + 1), rdx) (* allocates a fresh position on a symbolic stack *) method allocate = let x, n = let allocate' = function (* | [] -> (rbx, 0) *) | [] -> (r10, 0) | S n :: _ -> (S (n + 1), n + 2) | R n :: _ when n < num_of_regs -> (R (n + 1), stack_slots) | _ -> (S static_size, static_size + 1) in allocate' stack in (x, {}) (* pushes an operand to the symbolic stack *) method push y = {} (* pops one operand from the symbolic stack *) method pop = let[@ocaml.warning "-8"] (x :: stack') = stack in (x, {}) (* pops one operand from the symbolic stack *) method pop_for_arg_2 = if n_free_arg_regs > 0 then let n' = n_free_arg_regs - 1 in (R (Array.length regs - 3 - n' - 1), {}) else (L 0, {<>}) (* failwith (Printf.sprintf "Not implemented %s: %d" __FILE__ __LINE__) *) method pop_for_arg n = if n_free_arg_regs > 0 then let n' = n_free_arg_regs - 1 in (* (R (Array.length regs - 3 - n' - 1), {}) *) ( R (Array.length regs - 3 - max_free_arg_regs + n - 1), {} ) else failwith (Printf.sprintf "Not implemented %s: %d" __FILE__ __LINE__) (* let[@ocaml.warning "-8"] (x :: stack') = stack in (x, {}) *) (* pops two operands from the symbolic stack *) method pop2 = let[@ocaml.warning "-8"] (x :: y :: stack') = stack in (x, y, {}) (* peeks the top of the stack (the stack does not change) *) method peek = List.hd stack (* peeks two topmost values from the stack (the stack itself does not change) *) method peek2 = let[@ocaml.warning "-8"] (x :: y :: _) = stack in (x, y) (* tag hash: gets a hash for a string tag *) method hash tag = let h = Stdlib.ref 0 in for i = 0 to min (String.length tag - 1) 4 do h := (!h lsl 6) lor String.index chars tag.[i] done; !h (* registers a variable in the environment *) method variable x = match x with | Value.Global name -> {} | _ -> self (* registers a string constant *) method string x = let escape x = let n = String.length x in let buf = Buffer.create (n * 2) in let rec iterate i = if i < n then ( (match x.[i] with | '"' -> Buffer.add_string buf "\\\"" | '\n' -> Buffer.add_string buf "\n" | '\t' -> Buffer.add_string buf "\t" | c -> Buffer.add_char buf c); iterate (i + 1)) in iterate 0; Buffer.contents buf in let x = escape x in try (M.find x stringm, self) with Not_found -> let y = Printf.sprintf "string_%d" scount in let m = M.add x y stringm in (y, {}) (* gets number of arguments in the current function *) method nargs = nargs (* gets all global variables *) method globals = S.elements (S.diff globals externs) (* gets all string definitions *) method strings = M.bindings stringm (* gets a number of stack positions allocated *) method allocated = stack_slots method allocated_size = Printf.sprintf "LS%s_SIZE" fname (* enters a function *) method enter f nargs nlocals has_closure = {} (* returns a label for the epilogue *) method epilogue = Printf.sprintf "L%s_epilogue" fname (* returns a name for local size meta-symbol *) method lsize = Printf.sprintf "L%s_SIZE" fname (* returns a list of live registers *) method live_registers depth = let rec inner d acc = function | [] -> acc | (R _ as r) :: tl -> inner (d + 1) (if d >= depth then r :: acc else acc) tl | _ :: tl -> inner (d + 1) acc tl in inner 0 [] stack (* generate a line number information for current function *) method gen_line line = let lab = Printf.sprintf ".L%d" nlabels in ( {}, if fname = "main" then [ Meta (Printf.sprintf "\t.stabn 68,0,%d,%s" line lab); Label lab ] else (if first_line then [ Meta (Printf.sprintf "\t.stabn 68,0,%d,0" line) ] else []) @ [ Meta (Printf.sprintf "\t.stabn 68,0,%d,%s-%s" line lab fname); Label lab; ] ) end (* Generates an assembler text for a program: first compiles the program into the stack code, then generates x86 assember code, then prints the assembler file *) let genasm cmd prog = let sm = SM.compile cmd prog in let env, code = compile cmd (new env sm) (fst (fst prog)) sm in let globals = List.map (fun s -> Meta (Printf.sprintf "\t.globl\t%s" s)) env#publics in let data = [ Meta "\t.data" ] @ List.map (fun (s, v) -> Meta (Printf.sprintf "%s:\t.string\t\"%s\"" v s)) env#strings @ [ Meta "_init:\t.quad 0"; Meta "\t.section custom_data,\"aw\",@progbits"; Meta (Printf.sprintf "filler:\t.fill\t%d, 8, 1" env#max_locals_size); ] @ List.concat @@ List.map (fun s -> [ Meta (Printf.sprintf "\t.stabs \"%s:S1\",40,0,0,%s" (String.sub s (String.length "global_") (String.length s - String.length "global_")) s); Meta (Printf.sprintf "%s:\t.quad\t1" s); ]) env#globals in let asm = Buffer.create 1024 in List.iter (fun i -> Buffer.add_string asm (Printf.sprintf "%s\n" @@ show i)) ([ Meta (Printf.sprintf "\t.file \"%s\"" cmd#get_absolute_infile); Meta (Printf.sprintf "\t.stabs \"%s\",100,0,0,.Ltext" cmd#get_absolute_infile); ] @ globals @ data @ [ Meta "\t.text"; Label ".Ltext"; Meta "\t.stabs \"data:t1=r1;0;4294967295;\",128,0,0,0"; ] @ code); Buffer.contents asm let get_std_path () = match Sys.getenv_opt "LAMA" with Some s -> s | None -> Stdpath.path (* Builds a program: generates the assembler file and compiles it with the gcc toolchain *) let build cmd prog = let find_objects imports paths = let module S = Set.Make (String) in let rec iterate acc s = function | [] -> acc | import :: imports -> if S.mem import s then iterate acc s imports else let path, intfs = Interface.find import paths in iterate (Filename.concat path (import ^ ".o") :: acc) (S.add import s) ((List.map (function | `Import name -> name | _ -> invalid_arg "must not happen") @@ List.filter (function `Import _ -> true | _ -> false) intfs) @ imports) in iterate [] (S.add "Std" S.empty) imports in cmd#dump_file "s" (genasm cmd prog); cmd#dump_file "i" (Interface.gen prog); let inc = get_std_path () in let compiler = "gcc" in let flags = "-no-pie" in match cmd#get_mode with | `Default -> let objs = find_objects (fst @@ fst prog) cmd#get_include_paths in let buf = Buffer.create 255 in List.iter (fun o -> Buffer.add_string buf o; Buffer.add_string buf " ") objs; let gcc_cmdline = Printf.sprintf "%s %s %s %s %s.s %s %s/runtime.a" compiler flags cmd#get_debug cmd#get_output_option cmd#basename (Buffer.contents buf) inc in Sys.command gcc_cmdline | `Compile -> Sys.command (Printf.sprintf "%s %s %s -c %s.s" compiler flags cmd#get_debug cmd#basename) | _ -> invalid_arg "must not happen"