open GT open Language open SM (* X86 codegeneration interface *) (* The registers: *) let regs = [|"%ebx"; "%ecx"; "%esi"; "%edi"; "%eax"; "%edx"; "%ebp"; "%esp"|] (* We can not freely operate with all register; only 3 by now *) let num_of_regs = Array.length regs - 5 (* We need to know the word size to calculate offsets correctly *) let word_size = 4;; (* We need to distinguish the following operand types: *) @type opnd = | R of int (* hard register *) | S of int (* a position on the hardware stack *) | C (* a saved closure *) | M of string (* a named memory location *) | L of int (* an immediate operand *) | I of int * opnd (* an indirect operand with offset *) with show let show_opnd = show(opnd) (* For convenience we define the following synonyms for the registers: *) let ebx = R 0 let ecx = R 1 let esi = R 2 let edi = R 3 let eax = R 4 let edx = R 5 let ebp = R 6 let esp = R 7 (* Now x86 instruction (we do not need all of them): *) type instr = (* copies a value from the first to the second operand *) | Mov of opnd * opnd (* loads an address of the first operand into the second *) | Lea of opnd * opnd (* makes a binary operation; note, the first operand *) | Binop of string * opnd * opnd (* designates x86 operator, not the source language one *) (* x86 integer division, see instruction set reference *) | IDiv of opnd (* see instruction set reference *) | Cltd (* sets a value from flags; the first operand is the *) | Set of string * string (* suffix, which determines the value being set, the *) (* the second --- (sub)register name *) (* pushes the operand on the hardware stack *) | Push of opnd (* pops from the hardware stack to the operand *) | Pop of opnd (* call a function by a name *) | Call of string (* call a function by indirect address *) | CallI of opnd (* returns from a function *) | Ret (* a label in the code *) | Label of string (* a conditional jump *) | CJmp of string * string (* a non-conditional jump *) | Jmp of string (* directive *) | Meta of string (* arithmetic correction: decrement *) | Dec of opnd (* arithmetic correction: or 0x0001 *) | Or1 of opnd (* arithmetic correction: shl 1 *) | Sal1 of opnd (* arithmetic correction: shr 1 *) | Sar1 of opnd | Repmovsl (* Instruction printer *) let stack_offset i = if i >= 0 then (i+1) * word_size else 8 + (-i-1) * word_size let show instr = let rec opnd = function | R i -> regs.(i) | C -> "4(%ebp)" | S i -> if i >= 0 then Printf.sprintf "-%d(%%ebp)" (stack_offset i) else Printf.sprintf "%d(%%ebp)" (stack_offset i) | M x -> x | L i -> Printf.sprintf "$%d" i | I (0, x) -> Printf.sprintf "(%s)" (opnd x) | I (n, x) -> Printf.sprintf "%d(%s)" n (opnd x) in let binop = function | "+" -> "addl" | "-" -> "subl" | "*" -> "imull" | "&&" -> "andl" | "!!" -> "orl" | "^" -> "xorl" | "cmp" -> "cmpl" | "test" -> "test" | _ -> failwith "unknown binary operator" in match instr with | Cltd -> "\tcltd" | Set (suf, s) -> Printf.sprintf "\tset%s\t%s" suf s | IDiv s1 -> Printf.sprintf "\tidivl\t%s" (opnd s1) | Binop (op, s1, s2) -> Printf.sprintf "\t%s\t%s,\t%s" (binop op) (opnd s1) (opnd s2) | Mov (s1, s2) -> Printf.sprintf "\tmovl\t%s,\t%s" (opnd s1) (opnd s2) | Lea (x, y) -> Printf.sprintf "\tleal\t%s,\t%s" (opnd x) (opnd y) | Push s -> Printf.sprintf "\tpushl\t%s" (opnd s) | Pop s -> Printf.sprintf "\tpopl\t%s" (opnd s) | Ret -> "\tret" | Call p -> Printf.sprintf "\tcall\t%s" p | CallI o -> Printf.sprintf "\tcall\t*(%s)" (opnd o) | Label l -> Printf.sprintf "%s:\n" l | Jmp l -> Printf.sprintf "\tjmp\t%s" l | CJmp (s , l) -> Printf.sprintf "\tj%s\t%s" s l | Meta s -> Printf.sprintf "%s\n" s | Dec s -> Printf.sprintf "\tdecl\t%s" (opnd s) | Or1 s -> Printf.sprintf "\torl\t$0x0001,\t%s" (opnd s) | Sal1 s -> Printf.sprintf "\tsall\t%s" (opnd s) | Sar1 s -> Printf.sprintf "\tsarl\t%s" (opnd s) | Repmovsl -> Printf.sprintf "\trep movsl\t" (* Opening stack machine to use instructions without fully qualified names *) open SM (* Symbolic stack machine evaluator compile : env -> prg -> env * instr list Take an environment, a stack machine program, and returns a pair --- the updated environment and the list of x86 instructions *) let compile cmd env imports code = (* SM.print_prg code; *) flush stdout; let suffix = function | "<" -> "l" | "<=" -> "le" | "==" -> "e" | "!=" -> "ne" | ">=" -> "ge" | ">" -> "g" | _ -> failwith "unknown operator" in let box n = (n lsl 1) lor 1 in let rec compile' env scode = let on_stack = function S _ -> true | _ -> false in let mov x s = if on_stack x && on_stack s then [Mov (x, eax); Mov (eax, s)] else [Mov (x, s)] in let callc env n tail = let tail = tail && env#nargs = n in if tail then ( let rec push_args env acc = function | 0 -> env, acc | n -> let x, env = env#pop in if x = env#loc (Value.Arg (n-1)) then push_args env acc (n-1) else push_args env ((mov x (env#loc (Value.Arg (n-1)))) @ acc) (n-1) in let env , pushs = push_args env [] n in let closure, env = env#pop in let y , env = env#allocate in env, pushs @ [Mov (closure, edx); Mov (I(0, edx), eax); Mov (ebp, esp); Pop (ebp)] @ (if env#has_closure then [Pop ebx] else []) @ [Jmp "*%eax"] (* UGLY!!! *) ) else ( let pushr, popr = List.split @@ List.map (fun r -> (Push r, Pop r)) (env#live_registers n) in let pushr, popr = env#save_closure @ pushr, env#rest_closure @ popr in let env, code = let rec push_args env acc = function | 0 -> env, acc | n -> let x, env = env#pop in push_args env ((Push x)::acc) (n-1) in let env, pushs = push_args env [] n in let pushs = List.rev pushs in let closure, env = env#pop in let call_closure = if on_stack closure then [Mov (closure, edx); Mov (edx, eax); CallI eax] else [Mov (closure, edx); CallI closure] in env, pushr @ pushs @ call_closure @ [Binop ("+", L (word_size * List.length pushs), esp)] @ (List.rev popr) in let y, env = env#allocate in env, code @ [Mov (eax, y)] ) in let call env f n tail = let tail = tail && env#nargs = n && f.[0] <> '.' in let f = match f.[0] with '.' -> "B" ^ String.sub f 1 (String.length f - 1) | _ -> f in if tail then ( let rec push_args env acc = function | 0 -> env, acc | n -> let x, env = env#pop in if x = env#loc (Value.Arg (n-1)) then push_args env acc (n-1) else push_args env ((mov x (env#loc (Value.Arg (n-1)))) @ acc) (n-1) in let env, pushs = push_args env [] n in let y, env = env#allocate in env, pushs @ [Mov (ebp, esp); Pop (ebp)] @ (if env#has_closure then [Pop ebx] else []) @ [Jmp f] ) else ( let pushr, popr = List.split @@ List.map (fun r -> (Push r, Pop r)) (env#live_registers n) in let pushr, popr = env#save_closure @ pushr, env#rest_closure @ popr in let env, code = let rec push_args env acc = function | 0 -> env, acc | n -> let x, env = env#pop in push_args env ((Push x)::acc) (n-1) in let env, pushs = push_args env [] n in let pushs = match f with | "Barray" -> List.rev @@ (Push (L (box n))) :: pushs | "Bsexp" -> List.rev @@ (Push (L (box n))) :: pushs | "Bsta" -> pushs | _ -> List.rev pushs in env, pushr @ pushs @ [Call f; Binop ("+", L (word_size * List.length pushs), esp)] @ (List.rev popr) in let y, env = env#allocate in env, code @ [Mov (eax, y)] ) in match scode with | [] -> env, [] | instr :: scode' -> let stack = "" (* env#show_stack*) in (* Printf.printf "insn=%s, stack=%s\n%!" (GT.show(insn) instr) (env#show_stack); *) let env', code' = if env#is_barrier then match instr with | LABEL s -> if env#has_stack s then (env#drop_barrier)#retrieve_stack s, [Label s] else env#drop_stack, [] | FLABEL s -> env#drop_barrier, [Label s] | SLABEL s -> env, [Label s] | _ -> env, [] else match instr with | PUBLIC name -> env#register_public name, [] | EXTERN name -> env#register_extern name, [] | IMPORT name -> env, [] | CLOSURE (name, closure) -> let pushr, popr = List.split @@ List.map (fun r -> (Push r, Pop r)) (env#live_registers 0) in let closure_len = List.length closure in let push_closure = List.map (fun d -> Push (env#loc d)) @@ List.rev closure in let s, env = env#allocate in (env, pushr @ push_closure @ [Push (M ("$" ^ name)); Push (L (box closure_len)); Call "Bclosure"; Binop ("+", L (word_size * (closure_len + 2)), esp); Mov (eax, s)] @ List.rev popr @ env#reload_closure) | CONST n -> let s, env' = env#allocate in (env', [Mov (L (box n), s)]) | STRING s -> let s, env = env#string s in let l, env = env#allocate in let env, call = call env ".string" 1 false in (env, Mov (M ("$" ^ s), l) :: call) | LDA x -> let s, env' = (env #variable x)#allocate in let s', env''= env'#allocate in env'', [Lea (env'#loc x, eax); Mov (eax, s); Mov (eax, s')] | LD x -> let s, env' = (env#variable x)#allocate in env', (match s with | S _ | M _ -> [Mov (env'#loc x, eax); Mov (eax, s)] | _ -> [Mov (env'#loc x, s)] ) | ST x -> let env' = env#variable x in let s = env'#peek in env', (match s with | S _ | M _ -> [Mov (s, eax); Mov (eax, env'#loc x)] | _ -> [Mov (s, env'#loc x)] ) | STA -> call env ".sta" 3 false | STI -> let v, x, env' = env#pop2 in env'#push x, (match x with | S _ | M _ -> [Mov (v, edx); Mov (x, eax); Mov (edx, I (0, eax)); Mov (edx, x)] @ env#reload_closure | _ -> [Mov (v, eax); Mov (eax, I (0, x)); Mov (eax, x)] ) | BINOP op -> let x, y, env' = env#pop2 in env'#push y, (match op with | "/" -> [Mov (y, eax); Sar1 eax; Cltd; (* x := x >> 1 ?? *) Sar1 x; (*!!!*) IDiv x; Sal1 eax; Or1 eax; Mov (eax, y) ] | "%" -> [Mov (y, eax); Sar1 eax; Cltd; (* x := x >> 1 ?? *) Sar1 x; (*!!!*) IDiv x; Sal1 edx; Or1 edx; Mov (edx, y) ] @ env#reload_closure | "<" | "<=" | "==" | "!=" | ">=" | ">" -> (match x with | M _ | S _ -> [Binop ("^", eax, eax); Mov (x, edx); Binop ("cmp", edx, y); Set (suffix op, "%al"); Sal1 eax; Or1 eax; Mov (eax, y) ] @ env#reload_closure | _ -> [Binop ("^" , eax, eax); Binop ("cmp", x, y); Set (suffix op, "%al"); Sal1 eax; Or1 eax; Mov (eax, y) ] ) | "*" -> if on_stack y then [Dec y; Mov (x, eax); Sar1 eax; Binop (op, y, eax); Or1 eax; Mov (eax, y)] else [Dec y; Mov (x, eax); Sar1 eax; Binop (op, eax, y); Or1 y] | "&&" -> [Dec x; (*!!!*) Mov (x, eax); Binop (op, x, eax); Mov (L 0, eax); Set ("ne", "%al"); Dec y; (*!!!*) Mov (y, edx); Binop (op, y, edx); Mov (L 0, edx); Set ("ne", "%dl"); Binop (op, edx, eax); Set ("ne", "%al"); Sal1 eax; Or1 eax; Mov (eax, y) ] @ env#reload_closure | "!!" -> [Mov (y, eax); Sar1 eax; Sar1 x; (*!!!*) Binop (op, x, eax); Mov (L 0, eax); Set ("ne", "%al"); Sal1 eax; Or1 eax; Mov (eax, y) ] | "+" -> if on_stack x && on_stack y then [Mov (x, eax); Dec eax; Binop ("+", eax, y)] else [Binop (op, x, y); Dec y] | "-" -> if on_stack x && on_stack y then [Mov (x, eax); Binop (op, eax, y); Or1 y] else [Binop (op, x, y); Or1 y] ) | LABEL s | FLABEL s | SLABEL s -> env, [Label s] | JMP l -> (env#set_stack l)#set_barrier, [Jmp l] | CJMP (s, l) -> let x, env = env#pop in env#set_stack l, [Sar1 x; (*!!!*) Binop ("cmp", L 0, x); CJmp (s, l)] | BEGIN (f, nargs, nlocals, closure, args, scopes) -> let rec stabs_scope scope = let names = List.map (fun (name, index) -> Meta (Printf.sprintf "\t.stabs \"%s:1\",128,0,0,-%d" name (stack_offset index)) ) scope.names in names @ (if names = [] then [] else [Meta (Printf.sprintf "\t.stabn 192,0,0,%s-%s" scope.blab f)]) @ (List.flatten @@ List.map stabs_scope scope.subs) @ (if names = [] then [] else [Meta (Printf.sprintf "\t.stabn 224,0,0,%s-%s" scope.elab f)]) in let name = if f.[0] = 'L' then String.sub f 1 (String.length f - 1) else f in env#assert_empty_stack; let has_closure = closure <> [] in let env = env#enter f nargs nlocals has_closure in env, [Meta (Printf.sprintf "\t.type %s, @function" name)] @ (if f = "main" then [] else [Meta (Printf.sprintf "\t.stabs \"%s:F1\",36,0,0,%s" name f)] @ (List.mapi (fun i a -> Meta (Printf.sprintf "\t.stabs \"%s:p1\",160,0,0,%d" a ((i*4) + 8))) args) @ (List.flatten @@ List.map stabs_scope scopes) ) @ [Meta "\t.cfi_startproc"] @ (if has_closure then [Push edx] else []) @ (if f = cmd#topname then [Mov (M "_init", eax); Binop ("test", eax, eax); CJmp ("z", "_continue"); Ret; Label "_continue"; Mov (L 1, M "_init"); ] else [] ) @ [Push ebp; Meta ("\t.cfi_def_cfa_offset\t" ^ if has_closure then "12" else "8"); Meta ("\t.cfi_offset 5, -" ^ if has_closure then "12" else "8"); Mov (esp, ebp); Meta "\t.cfi_def_cfa_register\t5"; Binop ("-", M ("$" ^ env#lsize), esp); Mov (esp, edi); Mov (M "$filler", esi); Mov (M ("$" ^ (env#allocated_size)), ecx); Repmovsl ] @ (if f = "main" then [Call "__gc_init"; Push (I (12, ebp)); Push (I (8, ebp)); Call "set_args"; Binop ("+", L 8, esp)] else [] ) @ (if f = cmd#topname then List.map (fun i -> Call ("init" ^ i)) (List.filter (fun i -> i <> "Std") imports) else [] ) | END -> let x, env = env#pop in env#assert_empty_stack; let name = env#fname in env#leave, [ Mov (x, eax); (*!!*) Label env#epilogue; Mov (ebp, esp); Pop ebp; ] @ env#rest_closure @ (if name = "main" then [Binop ("^", eax, eax)] else []) @ [Meta "\t.cfi_restore\t5"; Meta "\t.cfi_def_cfa\t4, 4"; Ret; Meta "\t.cfi_endproc"; Meta (Printf.sprintf "\t.set\t%s,\t%d" env#lsize (env#allocated * word_size)); Meta (Printf.sprintf "\t.set\t%s,\t%d" env#allocated_size env#allocated); Meta (Printf.sprintf "\t.size %s, .-%s" name name); ] | RET -> let x = env#peek in env, [Mov (x, eax); Jmp env#epilogue] | ELEM -> call env ".elem" 2 false | CALL (f, n, tail) -> call env f n tail | CALLC (n, tail) -> callc env n tail | SEXP (t, n) -> let s, env = env#allocate in let env, code = call env ".sexp" (n+1) false in env, [Mov (L (box (env#hash t)), s)] @ code | DROP -> snd env#pop, [] | DUP -> let x = env#peek in let s, env = env#allocate in env, mov x s | SWAP -> let x, y = env#peek2 in env, [Push x; Push y; Pop x; Pop y] | TAG (t, n) -> let s1, env = env#allocate in let s2, env = env#allocate in let env, code = call env ".tag" 3 false in env, [Mov (L (box (env#hash t)), s1); Mov (L (box n), s2)] @ code | ARRAY n -> let s, env = env#allocate in let env, code = call env ".array_patt" 2 false in env, [Mov (L (box n), s)] @ code | PATT StrCmp -> call env ".string_patt" 2 false | PATT patt -> call env (match patt with | Boxed -> ".boxed_patt" | UnBoxed -> ".unboxed_patt" | Array -> ".array_tag_patt" | String -> ".string_tag_patt" | Sexp -> ".sexp_tag_patt" | Closure -> ".closure_tag_patt" ) 1 false | LINE (line) -> env#gen_line line | FAIL ((line, col), value) -> let v, env = if value then env#peek, env else env#pop in let s, env = env#string cmd#get_infile in env, [Push (L (box col)); Push (L (box line)); Push (M ("$" ^ s)); Push v; Call "Bmatch_failure"; Binop ("+", L (4 * word_size), esp)] | i -> invalid_arg (Printf.sprintf "invalid SM insn: %s\n" (GT.show(insn) i)) in let env'', code'' = compile' env' scode' in env'', [Meta (Printf.sprintf "# %s / % s" (GT.show(SM.insn) instr) stack)] @ code' @ code'' in compile' env code (* A set of strings *) module S = Set.Make (String) (* A map indexed by strings *) module M = Map.Make (String) (* Environment implementation *) class env prg = let chars = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'" in let make_assoc l i = List.combine l (List.init (List.length l) (fun x -> x + i)) in let rec assoc x = function [] -> raise Not_found | l :: ls -> try List.assoc x l with Not_found -> assoc x ls in object (self) inherit SM.indexer prg val globals = S.empty (* a set of global variables *) val stringm = M.empty (* a string map *) val scount = 0 (* string count *) val stack_slots = 0 (* maximal number of stack positions *) val static_size = 0 (* static data size *) val stack = [] (* symbolic stack *) val nargs = 0 (* number of function arguments *) val locals = [] (* function local variables *) val fname = "" (* function name *) val stackmap = M.empty (* labels to stack map *) val barrier = false (* barrier condition *) val max_locals_size = 0 val has_closure = false val publics = S.empty val externs = S.empty val nlabels = 0 val first_line = true method publics = S.elements publics method register_public name = {< publics = S.add name publics >} method register_extern name = {< externs = S.add name externs >} method max_locals_size = max_locals_size method has_closure = has_closure method save_closure = if has_closure then [Push edx] else [] method rest_closure = if has_closure then [Pop edx] else [] method reload_closure = if has_closure then [Mov (C (*S 0*), edx)] else [] method fname = fname method leave = if stack_slots > max_locals_size then {< max_locals_size = stack_slots >} else self method show_stack = GT.show(list) (GT.show(opnd)) stack method print_locals = Printf.printf "LOCALS: size = %d\n" static_size; List.iter (fun l -> Printf.printf "("; List.iter (fun (a, i) -> Printf.printf "%s=%d " a i) l; Printf.printf ")\n" ) locals; Printf.printf "END LOCALS\n" (* Assert empty stack *) method assert_empty_stack = assert (stack = []) (* check barrier condition *) method is_barrier = barrier (* set barrier *) method set_barrier = {< barrier = true >} (* drop barrier *) method drop_barrier = {< barrier = false >} (* drop stack *) method drop_stack = {< stack = [] >} (* associates a stack to a label *) method set_stack l = (*Printf.printf "Setting stack for %s\n" l;*) {< stackmap = M.add l stack stackmap >} (* retrieves a stack for a label *) method retrieve_stack l = (*Printf.printf "Retrieving stack for %s\n" l;*) try {< stack = M.find l stackmap >} with Not_found -> self (* checks if there is a stack for a label *) method has_stack l = (*Printf.printf "Retrieving stack for %s\n" l;*) M.mem l stackmap (* gets a name for a global variable *) method loc x = match x with | Value.Global name -> M ("global_" ^ name) | Value.Fun name -> M ("$" ^ name) | Value.Local i -> S i | Value.Arg i -> S (- (i + if has_closure then 2 else 1)) | Value.Access i -> I (word_size * (i+1), edx) (* allocates a fresh position on a symbolic stack *) method allocate = let x, n = let rec allocate' = function | [] -> ebx , 0 | (S n)::_ -> S (n+1) , n+2 | (R n)::_ when n < num_of_regs -> R (n+1) , stack_slots | _ -> S static_size, static_size+1 in allocate' stack in x, {< stack_slots = max n stack_slots; stack = x::stack >} (* pushes an operand to the symbolic stack *) method push y = {< stack = y::stack >} (* pops one operand from the symbolic stack *) method pop = let x::stack' = stack in x, {< stack = stack' >} (* pops two operands from the symbolic stack *) method pop2 = let x::y::stack' = stack in x, y, {< stack = stack' >} (* peeks the top of the stack (the stack does not change) *) method peek = List.hd stack (* peeks two topmost values from the stack (the stack itself does not change) *) method peek2 = let x::y::_ = stack in x, y (* tag hash: gets a hash for a string tag *) method hash tag = let h = Pervasives.ref 0 in for i = 0 to min (String.length tag - 1) 4 do h := (!h lsl 6) lor (String.index chars tag.[i]) done; !h (* registers a variable in the environment *) method variable x = match x with | Value.Global name -> {< globals = S.add ("global_" ^ name) globals >} | _ -> self (* registers a string constant *) method string x = let escape x = let n = String.length x in let buf = Buffer.create (n*2) in let rec iterate i = if i < n then ( (match x.[i] with | '"' -> Buffer.add_string buf "\\\"" | '\n' -> Buffer.add_string buf "\n" | '\t' -> Buffer.add_string buf "\t" | c -> Buffer.add_char buf c ); iterate (i+1) ) in iterate 0; Buffer.contents buf in let x = escape x in try M.find x stringm, self with Not_found -> let y = Printf.sprintf "string_%d" scount in let m = M.add x y stringm in y, {< scount = scount + 1; stringm = m>} (* gets number of arguments in the current function *) method nargs = nargs (* gets all global variables *) method globals = S.elements (S.diff globals externs) (* gets all string definitions *) method strings = M.bindings stringm (* gets a number of stack positions allocated *) method allocated = stack_slots method allocated_size = Printf.sprintf "LS%s_SIZE" fname (* enters a function *) method enter f nargs nlocals has_closure = {< nargs = nargs; static_size = nlocals; stack_slots = nlocals; stack = []; fname = f; has_closure = has_closure; first_line = true >} (* returns a label for the epilogue *) method epilogue = Printf.sprintf "L%s_epilogue" fname (* returns a name for local size meta-symbol *) method lsize = Printf.sprintf "L%s_SIZE" fname (* returns a list of live registers *) method live_registers depth = let rec inner d acc = function | [] -> acc | (R _ as r)::tl -> inner (d+1) (if d >= depth then (r::acc) else acc) tl | _::tl -> inner (d+1) acc tl in inner 0 [] stack (* generate a line number information for current function *) method gen_line line = let lab = Printf.sprintf ".L%d" nlabels in {< nlabels = nlabels + 1; first_line = false >}, if fname = "main" then [Meta (Printf.sprintf "\t.stabn 68,0,%d,%s" line lab); Label lab] else (if first_line then [Meta (Printf.sprintf "\t.stabn 68,0,%d,0" line)] else []) @ [Meta (Printf.sprintf "\t.stabn 68,0,%d,%s-%s" line lab fname); Label lab] end (* Generates an assembler text for a program: first compiles the program into the stack code, then generates x86 assember code, then prints the assembler file *) let genasm cmd prog = let sm = SM.compile cmd prog in let env, code = compile cmd (new env sm) (fst (fst prog)) sm in let globals = List.map (fun s -> Meta (Printf.sprintf "\t.globl\t%s" s)) env#publics in let data = [Meta "\t.data"] @ (List.map (fun (s, v) -> Meta (Printf.sprintf "%s:\t.string\t\"%s\"" v s)) env#strings) @ [Meta "_init:\t.int 0"; Meta "\t.section custom_data,\"aw\",@progbits"; Meta (Printf.sprintf "filler:\t.fill\t%d, 4, 1" env#max_locals_size)] @ (List.concat @@ List.map (fun s -> [Meta (Printf.sprintf "\t.stabs \"%s:S1\",40,0,0,%s" (String.sub s (String.length "global_") (String.length s - String.length "global_")) s); Meta (Printf.sprintf "%s:\t.int\t1" s)]) env#globals ) in let asm = Buffer.create 1024 in List.iter (fun i -> Buffer.add_string asm (Printf.sprintf "%s\n" @@ show i)) ([Meta (Printf.sprintf "\t.file \"%s\"" cmd#get_absolute_infile); Meta (Printf.sprintf "\t.stabs \"%s\",100,0,0,.Ltext" cmd#get_absolute_infile)] @ globals @ data @ [Meta "\t.text"; Label ".Ltext"; Meta "\t.stabs \"data:t1=r1;0;4294967295;\",128,0,0,0"] @ code); Buffer.contents asm let get_std_path () = match Sys.getenv_opt "LAMA" with | Some s -> s | None -> Stdpath.path (* Builds a program: generates the assembler file and compiles it with the gcc toolchain *) let build cmd prog = let find_objects imports paths = let module S = Set.Make (String) in let rec iterate acc s = function | [] -> acc | import::imports -> if S.mem import s then iterate acc s imports else let path, intfs = Interface.find import paths in iterate ((Filename.concat path (import ^ ".o")) :: acc) (S.add import s) ((List.map (function `Import name -> name | _ -> invalid_arg "must not happen") @@ List.filter (function `Import _ -> true | _ -> false) intfs) @ imports) in iterate [] (S.add "Std" S.empty) imports in cmd#dump_file "s" (genasm cmd prog); cmd#dump_file "i" (Interface.gen prog); let inc = get_std_path () in match cmd#get_mode with | `Default -> let objs = find_objects (fst @@ fst prog) cmd#get_include_paths in let buf = Buffer.create 255 in List.iter (fun o -> Buffer.add_string buf o; Buffer.add_string buf " ") objs; let gcc_cmdline = Printf.sprintf "gcc %s -m32 %s %s.s %s %s/runtime.a" cmd#get_debug cmd#get_output_option cmd#basename (Buffer.contents buf) inc in Sys.command gcc_cmdline | `Compile -> Sys.command (Printf.sprintf "gcc %s -m32 -c %s.s" cmd#get_debug cmd#basename) | _ -> invalid_arg "must not happen"