lama_byterun/src/SM.ml
2018-05-16 09:24:40 +03:00

266 lines
12 KiB
OCaml

open GT
open Language
(* The type for the stack machine instructions *)
@type insn =
(* binary operator *) | BINOP of string
(* put a constant on the stack *) | CONST of int
(* put a string on the stack *) | STRING of string
(* create an S-expression *) | SEXP of string * int
(* load a variable to the stack *) | LD of string
(* store a variable from the stack *) | ST of string
(* store in an array *) | STA of string * int
(* a label *) | LABEL of string
(* unconditional jump *) | JMP of string
(* conditional jump *) | CJMP of string * string
(* begins procedure definition *) | BEGIN of string * string list * string list
(* end procedure definition *) | END
(* calls a function/procedure *) | CALL of string * int * bool
(* returns from a function *) | RET of bool
(* drops the top element off *) | DROP
(* duplicates the top element *) | DUP
(* swaps two top elements *) | SWAP
(* checks the tag of S-expression *) | TAG of string
(* enters a scope *) | ENTER of string list
(* leaves a scope *) | LEAVE
with show
(* The type for the stack machine program *)
type prg = insn list
let print_prg p = List.iter (fun i -> Printf.printf "%s\n" (show(insn) i)) p
(* The type for the stack machine configuration: control stack, stack and configuration from statement
interpreter
*)
type config = (prg * State.t) list * Value.t list * Expr.config
(* Stack machine interpreter
val eval : env -> config -> prg -> config
Takes an environment, a configuration and a program, and returns a configuration as a result. The
environment is used to locate a label to jump to (via method env#labeled <label_name>)
*)
let split n l =
let rec unzip (taken, rest) = function
| 0 -> (List.rev taken, rest)
| n -> let h::tl = rest in unzip (h::taken, tl) (n-1)
in
unzip ([], l) n
let rec eval env ((cstack, stack, ((st, i, o) as c)) as conf) = function
| [] -> conf
| insn :: prg' ->
(match insn with
| BINOP op -> let y::x::stack' = stack in eval env (cstack, (Value.of_int @@ Expr.to_func op (Value.to_int x) (Value.to_int y)) :: stack', c) prg'
| CONST i -> eval env (cstack, (Value.of_int i)::stack, c) prg'
| STRING s -> eval env (cstack, (Value.of_string s)::stack, c) prg'
| SEXP (s, n) -> let vs, stack' = split n stack in
eval env (cstack, (Value.sexp s @@ List.rev vs)::stack', c) prg'
| LD x -> eval env (cstack, State.eval st x :: stack, c) prg'
| ST x -> let z::stack' = stack in eval env (cstack, stack', (State.update x z st, i, o)) prg'
| STA (x, n) -> let v::is, stack' = split (n+1) stack in
eval env (cstack, stack', (Language.Stmt.update st x v (List.rev is), i, o)) prg'
| LABEL _ -> eval env conf prg'
| JMP l -> eval env conf (env#labeled l)
| CJMP (c, l) -> let x::stack' = stack in eval env (cstack, stack', (st, i, o)) (if (c = "z" && Value.to_int x = 0) || (c = "nz" && Value.to_int x <> 0) then env#labeled l else prg')
| CALL (f, n, p) -> if env#is_label f
then eval env ((prg', st)::cstack, stack, c) (env#labeled f)
else eval env (env#builtin conf f n p) prg'
| BEGIN (_, args, locals) -> let vs, stack' = split (List.length args) stack in
let state = List.combine args @@ List.rev vs in
eval env (cstack, stack', (List.fold_left (fun s (x, v) -> State.update x v s) (State.enter st (args @ locals)) state, i, o)) prg'
| END | RET _ -> (match cstack with
| (prg', st')::cstack' -> eval env (cstack', stack, (State.leave st st', i, o)) prg'
| [] -> conf
)
| DROP -> eval env (cstack, List.tl stack, c) prg'
| DUP -> eval env (cstack, List.hd stack :: stack, c) prg'
| SWAP -> let x::y::stack' = stack in
eval env (cstack, y::x::stack', c) prg'
| TAG t -> let x::stack' = stack in
eval env (cstack, (Value.of_int @@ match x with Value.Sexp (t', _) when t' = t -> 1 | _ -> 0) :: stack', c) prg'
| ENTER xs -> let vs, stack' = split (List.length xs) stack in
eval env (cstack, stack', (State.push st (List.fold_left (fun s (x, v) -> State.bind x v s) State.undefined (List.combine xs vs)) xs, i, o)) prg'
| LEAVE -> eval env (cstack, stack, (State.drop st, i, o)) prg'
)
(* Top-level evaluation
val run : prg -> int list -> int list
Takes a program, an input stream, and returns an output stream this program calculates
*)
let run p i =
(*print_prg p;*)
let module M = Map.Make (String) in
let rec make_map m = function
| [] -> m
| (LABEL l) :: tl -> make_map (M.add l tl m) tl
| _ :: tl -> make_map m tl
in
let m = make_map M.empty p in
let (_, _, (_, _, o)) =
eval
(object
method is_label l = M.mem l m
method labeled l = M.find l m
method builtin (cstack, stack, (st, i, o)) f n p =
let f = match f.[0] with 'L' -> String.sub f 1 (String.length f - 1) | _ -> f in
let args, stack' = split n stack in
let (st, i, o, r) = Language.Builtin.eval (st, i, o, None) (List.rev args) f in
let stack'' = if p then stack' else let Some r = r in r::stack' in
Printf.printf "Builtin: %s\n";
(cstack, stack'', (st, i, o))
end
)
([], [], (State.empty, i, []))
p
in
o
(* Stack machine compiler
val compile : Language.t -> prg
Takes a program in the source language and returns an equivalent program for the
stack machine
*)
let compile (defs, p) =
let label s = "L" ^ s in
let rec call f args p =
let args_code = List.concat @@ List.map expr args in
args_code @ [CALL (label f, List.length args, p)]
and pattern env lfalse = function
| Stmt.Pattern.Wildcard -> env, false, [DROP]
| Stmt.Pattern.Ident n -> env, false, [DROP]
| Stmt.Pattern.Sexp (t, ps) ->
let ltag , env = env#get_label in
let ldrop, env = env#get_label in
let tag = [DUP; TAG t; CJMP ("nz", ltag); LABEL ldrop; DROP; JMP lfalse; LABEL ltag] in
let _, env, code =
List.fold_left
(fun (i, env, code) p ->
let env, _, pcode = pattern env ldrop p in
i+1, env, ([DUP; CONST i; CALL (".elem", 2, false)] @ pcode) :: code
)
(0, env, [])
ps
in
env, true, tag @ List.flatten (List.rev code) @ [DROP]
and bindings p =
let bindings =
transform(Stmt.Pattern.t)
(object inherit [int list, (string * int list) list] @Stmt.Pattern.t
method c_Wildcard path _ = []
method c_Ident path _ s = [s, path]
method c_Sexp path x _ ps = List.concat @@ List.mapi (fun i p -> x.GT.f (path @ [i]) p) ps
end)
[]
p
in
List.concat
(List.map
(fun (name, path) ->
[DUP] @
List.concat (List.map (fun i -> [CONST i; CALL (".elem", 2, false)]) path) @
[SWAP]
)
(List.rev bindings)
) @
[DROP; ENTER (List.map fst bindings)]
and expr = function
| Expr.Var x -> [LD x]
| Expr.Const n -> [CONST n]
| Expr.String s -> [STRING s]
| Expr.Binop (op, x, y) -> expr x @ expr y @ [BINOP op]
| Expr.Call (f, args) -> call f args false
| Expr.Array xs -> List.flatten (List.map expr xs) @ [CALL (".array", List.length xs, false)]
| Expr.Sexp (t, xs) -> List.flatten (List.map expr xs) @ [SEXP (t, List.length xs)]
| Expr.Elem (a, i) -> expr a @ expr i @ [CALL (".elem", 2, false)]
| Expr.Length e -> expr e @ [CALL (".length", 1, false)]
in
let rec compile_stmt l env = function
| Stmt.Assign (x, [], e) -> env, false, expr e @ [ST x]
| Stmt.Assign (x, is, e) -> env, false, List.flatten (List.map expr (is @ [e])) @ [STA (x, List.length is)]
| Stmt.Skip -> env, false, []
| Stmt.Seq (s1, s2) -> let l2, env = env#get_label in
let env, flag1, s1 = compile_stmt l2 env s1 in
let env, flag2, s2 = compile_stmt l env s2 in
env, flag2, s1 @ (if flag1 then [LABEL l2] else []) @ s2
| Stmt.If (c, s1, s2) -> let l2, env = env#get_label in
let env, flag1, s1 = compile_stmt l env s1 in
let env, flag2, s2 = compile_stmt l env s2 in
env, true, expr c @ [CJMP ("z", l2)] @ s1 @ (if flag1 then [] else [JMP l]) @ [LABEL l2] @ s2 @ (if flag2 then [] else [JMP l])
| Stmt.While (c, s) -> let loop, env = env#get_label in
let cond, env = env#get_label in
let env, _, s = compile_stmt cond env s in
env, false, [JMP cond; LABEL loop] @ s @ [LABEL cond] @ expr c @ [CJMP ("nz", loop)]
| Stmt.Repeat (s, c) -> let loop , env = env#get_label in
let check, env = env#get_label in
let env , flag, body = compile_stmt check env s in
env, false, [LABEL loop] @ body @ (if flag then [LABEL check] else []) @ (expr c) @ [CJMP ("z", loop)]
| Stmt.Call (f, args) -> env, false, call f args true
| Stmt.Return e -> env, false, (match e with Some e -> expr e | None -> []) @ [RET (e <> None)]
| Stmt.Leave -> env, false, [LEAVE]
| Stmt.Case (e, [p, s]) ->
let ldrop, env = env#get_label in
let env, _, pcode = pattern env ldrop p in
let env, _, scode = compile_stmt ldrop env (Stmt.Seq (s, Stmt.Leave)) in
env, true, expr e @ [DUP] @ pcode @ bindings p @ scode @ [JMP l; LABEL ldrop; DROP]
| Stmt.Case (e, brs) ->
let n = List.length brs - 1 in
(*let ldrop, env = env#get_label in*)
let env, _, _, code =
List.fold_left
(fun (env, lab, i, code) (p, s) ->
let (lfalse, env), jmp =
if i = n
then (l, env), []
else env#get_label, [JMP l]
in
let env, _, pcode = pattern env lfalse p in
let env, _, scode = compile_stmt l(*ldrop*) env (Stmt.Seq (s, Stmt.Leave)) in
(env, Some lfalse, i+1, ((match lab with None -> [] | Some l -> [LABEL l; DUP]) @ pcode @ bindings p @ scode @ jmp) :: code)
)
(env, None, 0, []) brs
in
env, true, expr e @ [DUP] @ (List.flatten @@ List.rev code) @ [JMP l] (*; LABEL ldrop; DROP]*)
in
let compile_def env (name, (args, locals, stmt)) =
let lend, env = env#get_label in
let env, flag, code = compile_stmt lend env stmt in
env,
[LABEL name; BEGIN (name, args, locals)] @
code @
(if flag then [LABEL lend] else []) @
[END]
in
let env =
object
val ls = 0
method get_label = (label @@ string_of_int ls), {< ls = ls + 1 >}
end
in
let env, def_code =
List.fold_left
(fun (env, code) (name, others) -> let env, code' = compile_def env (label name, others) in env, code'::code)
(env, [])
defs
in
let lend, env = env#get_label in
let _, flag, code = compile_stmt lend env p in
(if flag then code @ [LABEL lend] else code) @ [END] @ (List.concat def_code)