lama_byterun/src/X86.ml
2024-07-11 15:19:22 +02:00

1195 lines
40 KiB
OCaml

open GT
open Language
(* X86 codegeneration interface *)
type register = Register of string [@@deriving gt ~options:{ show }]
module Registers : sig
val rax : register
val rdi : register
val rsi : register
val rdx : register
val rcx : register
val rbp : register
val rsp : register
val r8 : register
val r9 : register
val r10 : register
val r11 : register
val r12 : register
val r13 : register
val r14 : register
val r15 : register
val argument_registers : register array
(** All of argument registers are caller-saved *)
val extra_caller_saved_registers : register array
(** Caller saved registers that are not used for arguments *)
end = struct
(* Caller-saved special registers *)
let rax = Register "%rax"
(* Caller-saved special and argument registers *)
let rdx = Register "%rdx"
(* Caller-saved argument registers *)
let rdi = Register "%rdi"
let rsi = Register "%rsi"
let rcx = Register "%rcx"
let r8 = Register "%r8"
let r9 = Register "%r9"
(* Extra caller-saved registers *)
let r10 = Register "%r10"
let r11 = Register "%r11"
(* Callee-saved special registers *)
let rbp = Register "%rbp"
let rsp = Register "%rsp"
(* r12-15 registes are calee-saved *)
(* They are not used in compilation for simplicity*)
let r12 = Register "%r12"
let r13 = Register "%r13"
let r14 = Register "%r14"
let r15 = Register "%r15"
let argument_registers = [| rdi; rsi; rdx; rcx; r8; r9 |]
let extra_caller_saved_registers = [| r10; r11; r12; r13; r14; r15 |]
end
(* We need to know the word size to calculate offsets correctly *)
let word_size = 8
(* We need to distinguish the following operand types: *)
type opnd =
| R of register (* hard register *)
| S of int (* a position on the hardware stack *)
| M of string (* a named memory location *)
| L of int (* an immediate operand *)
| I of int * opnd (* an indirect operand with offset *)
[@@deriving gt ~options:{ show }]
type argument_location = Register of opnd | Stack
let show_opnd = show opnd
(* For convenience we define the following synonyms for the registers: *)
let rax = R Registers.rax
let rdx = R Registers.rdx
let rbp = R Registers.rbp
let rsp = R Registers.rsp
let rdi = R Registers.rdi
let rsi = R Registers.rsi
let rcx = R Registers.rcx
let r8 = R Registers.r8
let r9 = R Registers.r9
let r10 = R Registers.r10
let r11 = R Registers.r11
let r12 = R Registers.r12
let r13 = R Registers.r13
let r14 = R Registers.r14
let r15 = R Registers.r15
(* Now x86 instruction (we do not need all of them): *)
type instr =
(* copies a value from the first to the second operand *)
| Mov of opnd * opnd
(* loads an address of the first operand into the second *)
| Lea of opnd * opnd
(* makes a binary operation; note, the first operand *)
| Binop of string * opnd * opnd
(* designates x86 operator, not the source language one *)
(* x86 integer division, see instruction set reference *)
| IDiv of opnd
(* see instruction set reference *)
| Cltd
(* sets a value from flags; the first operand is the *)
| Set of string * string
(* suffix, which determines the value being set, the *)
(* the second --- (sub)register name *)
(* pushes the operand on the hardware stack *)
| Push of opnd
(* pops from the hardware stack to the operand *)
| Pop of opnd
(* call a function by a name *)
| Call of string
(* call a function by indirect address *)
| CallI of opnd
(* returns from a function *)
| Ret
(* a label in the code *)
| Label of string
(* a conditional jump *)
| CJmp of string * string
(* a non-conditional jump *)
| Jmp of string
(* directive *)
| Meta of string
(* arithmetic correction: decrement *)
| Dec of opnd
(* arithmetic correction: or 0x0001 *)
| Or1 of opnd
(* arithmetic correction: shl 1 *)
| Sal1 of opnd
(* arithmetic correction: shr 1 *)
| Sar1 of opnd
| Repmovsl
(* Instruction printer *)
let stack_offset i =
if i >= 0 then (i + 1) * word_size else (-i + 1) * word_size
let show instr =
let rec opnd = function
| R (Register name) -> name
| S i ->
if i >= 0 then Printf.sprintf "-%d(%%rbp)" (stack_offset i)
else Printf.sprintf "%d(%%rbp)" (stack_offset i)
| M x -> x
| L i -> Printf.sprintf "$%d" i
| I (0, x) -> Printf.sprintf "(%s)" (opnd x)
| I (n, x) -> Printf.sprintf "%d(%s)" n (opnd x)
in
let binop = function
| "+" -> "add"
| "-" -> "sub"
| "*" -> "imul"
| "&&" -> "and"
| "!!" -> "or"
| "^" -> "xor"
| "cmp" -> "cmp"
| "test" -> "test"
| _ -> failwith "unknown binary operator"
in
match instr with
| Cltd -> "\tcqo"
| Set (suf, s) -> Printf.sprintf "\tset%s\t%s" suf s
| IDiv s1 -> Printf.sprintf "\tidivq\t%s" (opnd s1)
| Binop (op, s1, s2) ->
Printf.sprintf "\t%s\t%s,\t%s" (binop op) (opnd s1) (opnd s2)
| Mov (s1, s2) -> Printf.sprintf "\tmovq\t%s,\t%s" (opnd s1) (opnd s2)
| Lea (x, y) -> Printf.sprintf "\tlea\t%s,\t%s" (opnd x) (opnd y)
| Push s -> Printf.sprintf "\tpushq\t%s" (opnd s)
| Pop s -> Printf.sprintf "\tpopq\t%s" (opnd s)
| Ret -> "\tret"
| Call p -> Printf.sprintf "\tcall\t%s" p
| CallI o -> Printf.sprintf "\tcall\t*(%s)" (opnd o)
| Label l -> Printf.sprintf "%s:\n" l
| Jmp l -> Printf.sprintf "\tjmp\t%s" l
| CJmp (s, l) -> Printf.sprintf "\tj%s\t%s" s l
| Meta s -> Printf.sprintf "%s\n" s
| Dec s -> Printf.sprintf "\tdec\t%s" (opnd s)
| Or1 s -> Printf.sprintf "\tor\t$0x0001,\t%s" (opnd s)
| Sal1 s -> Printf.sprintf "\tsal\t%s" (opnd s)
| Sar1 s -> Printf.sprintf "\tsar\t%s" (opnd s)
| Repmovsl -> Printf.sprintf "\trep movsq\t"
(* Opening stack machine to use instructions without fully qualified names *)
open SM
(*
Compile binary operation
compile_binop : env -> string -> env * instr list
*)
let compile_binop env op =
let suffix = function
| "<" -> "l"
| "<=" -> "le"
| "==" -> "e"
| "!=" -> "ne"
| ">=" -> "ge"
| ">" -> "g"
| _ -> failwith "unknown operator"
in
let in_memory = function M _ | S _ | I _ -> true | R _ | L _ -> false in
let without_extra op =
let x, env = env#pop in
let y = env#peek in
(env, op x y)
in
let with_rdx op =
if not env#rdx_in_use then
let x, env = env#pop in
let y = env#peek in
(env, op x y rdx)
else
let extra, env = env#allocate in
let _, env = env#pop in
let x, env = env#pop in
let y = env#peek in
let code = op x y rdx in
(env, [ Mov (rdx, extra) ] @ code @ [ Mov (extra, rdx) ])
in
let with_extra op =
let extra, env = env#allocate in
let _, env = env#pop in
let x, env = env#pop in
let y = env#peek in
if in_memory x then
(env, [ Mov (rdx, extra) ] @ op x y extra @ [ Mov (extra, rdx) ])
else (env, op x y extra)
in
match op with
| "/" ->
with_rdx (fun x y rdx ->
[
Mov (y, rax);
Sar1 rax;
Binop ("^", rdx, rdx);
Cltd;
Sar1 x;
IDiv x;
Sal1 rax;
Or1 rax;
Mov (rax, y);
])
| "%" ->
with_rdx (fun x y rdx ->
[
Mov (y, rax);
Sar1 rax;
Cltd;
Sar1 x;
IDiv x;
Sal1 rdx;
Or1 rdx;
Mov (rdx, y);
])
| "<" | "<=" | "==" | "!=" | ">=" | ">" ->
if in_memory env#peek then
with_extra (fun x y extra ->
[
Binop ("^", rax, rax);
Mov (x, extra);
Binop ("cmp", extra, y);
Set (suffix op, "%al");
Sal1 rax;
Or1 rax;
Mov (rax, y);
])
else
without_extra (fun x y ->
[
Binop ("^", rax, rax);
Binop ("cmp", x, y);
Set (suffix op, "%al");
Sal1 rax;
Or1 rax;
Mov (rax, y);
])
| "*" ->
without_extra (fun x y ->
if in_memory y then
[
Dec y;
Mov (x, rax);
Sar1 rax;
Binop (op, y, rax);
Or1 rax;
Mov (rax, y);
]
else
[ Dec y; Mov (x, rax); Sar1 rax; Binop (op, rax, y); Or1 y ])
| "&&" ->
with_extra (fun x y extra ->
[
Dec x;
Mov (x, rax);
Binop (op, x, rax);
Mov (L 0, rax);
Set ("ne", "%al");
Dec y;
Mov (y, extra);
Binop (op, y, extra);
Mov (L 0, extra);
Set ("ne", "%dl");
Binop (op, extra, rax);
Set ("ne", "%al");
Sal1 rax;
Or1 rax;
Mov (rax, y);
])
| "!!" ->
without_extra (fun x y ->
[
Mov (y, rax);
Sar1 rax;
Sar1 x;
Binop (op, x, rax);
Mov (L 0, rax);
Set ("ne", "%al");
Sal1 rax;
Or1 rax;
Mov (rax, y);
])
| "+" ->
without_extra (fun x y ->
if in_memory x && in_memory y then
[ Mov (x, rax); Dec rax; Binop ("+", rax, y) ]
else [ Binop (op, x, y); Dec y ])
| "-" ->
without_extra (fun x y ->
if in_memory x && in_memory y then
[ Mov (x, rax); Binop (op, rax, y); Or1 y ]
else [ Binop (op, x, y); Or1 y ])
| _ ->
failwith (Printf.sprintf "Unexpected pattern: %s: %d" __FILE__ __LINE__)
(* Symbolic stack machine evaluator
compile : env -> prg -> env * instr list
Take an environment, a stack machine program, and returns a pair ---
the updated environment and the list of x86 instructions
*)
let compile cmd env imports code =
(* SM.print_prg code;
flush stdout; *)
let box n = (n lsl 1) lor 1 in
let rec compile' env scode =
let on_stack = function S _ -> true | _ -> false in
let mov x s =
if on_stack x && on_stack s then [ Mov (x, rax); Mov (rax, s) ]
else [ Mov (x, s) ]
in
let callc env n tail =
(* romanv: let tail = tail && env#nargs = n && f.[0] <> '.' in *)
let env, code =
let stack_slots, env, setup_args_code =
let rec pop_args env acc = function
| 0 -> (env, acc)
| n ->
let x, env = env#pop in
pop_args env (x :: acc) (n - 1)
in
let move_args args arg_locs =
List.fold_left2
(fun acc arg arg_loc ->
match arg_loc with
| Register r -> Mov (arg, r) :: acc
| Stack -> Push arg :: acc)
[] args arg_locs
in
let env, args = pop_args env [] n in
let arg_locs, stack_slots =
env#arguments_locations (List.length args)
in
let setup_args_code = move_args args arg_locs in
(stack_slots, env, setup_args_code)
in
let closure, env = env#pop in
let call_closure =
if on_stack closure then
[ Mov (closure, r15); Mov (r15, rax); CallI rax ]
else [ Mov (closure, r15); CallI closure ]
in
let pushr, popr =
List.split @@ List.map (fun r -> (Push r, Pop r)) env#live_registers
in
let pushr, popr = (env#save_closure @ pushr, env#rest_closure @ popr) in
let aligned, align_prologue, align_epilogue =
( (stack_slots + List.length pushr) mod 2 == 0,
[ Binop ("-", L 8, rsp) ],
[ Binop ("+", L 8, rsp) ] )
in
( env,
pushr
@ (if not aligned then align_prologue else [])
@ setup_args_code @ call_closure
@ (if not aligned then align_epilogue else [])
@ (if stack_slots != 0 then
[ Binop ("+", L (word_size * stack_slots), rsp) ]
else [])
@ List.rev popr )
in
let y, env = env#allocate in
(env, code @ [ Mov (rax, y) ])
in
let call env f n tail =
(* romanv: let tail = tail && env#nargs = n && f.[0] <> '.' in *)
let f =
match f.[0] with
| '.' -> "B" ^ String.sub f 1 (String.length f - 1)
| _ -> f
in
let env, code =
let stack_slots, env, setup_args_code =
let rec pop_args env acc = function
| 0 -> (env, acc)
| n ->
let x, env = env#pop in
pop_args env (x :: acc) (n - 1)
in
let fix_args args =
match f with
| "Bsta" -> List.rev args
| "Barray" -> L (box n) :: args
| "Bsexp" -> L (box n) :: args
| "Bclosure" -> L (box (n - 1)) :: args
| _ -> args
in
let move_args args arg_locs =
List.fold_left2
(fun acc arg arg_loc ->
match arg_loc with
| Register r -> Mov (arg, r) :: acc
| Stack -> Push arg :: acc)
[] args arg_locs
in
let env, args = pop_args env [] n in
let args = fix_args args in
let arg_locs, stack_slots =
env#arguments_locations (List.length args)
in
let setup_args_code = move_args args arg_locs in
(stack_slots, env, setup_args_code)
in
let pushr, popr =
List.split @@ List.map (fun r -> (Push r, Pop r)) env#live_registers
in
let pushr, popr = (env#save_closure @ pushr, env#rest_closure @ popr) in
let aligned, align_prologue, align_epilogue =
( (stack_slots + List.length pushr) mod 2 == 0,
[ Binop ("-", L 8, rsp) ],
[ Binop ("+", L 8, rsp) ] )
in
( env,
pushr
@ (if not aligned then align_prologue else [])
@ setup_args_code @ [ Call f ]
@ (if not aligned then align_epilogue else [])
@ (if stack_slots != 0 then
[ Binop ("+", L (word_size * stack_slots), rsp) ]
else [])
@ List.rev popr )
in
let y, env = env#allocate in
(env, code @ [ Mov (rax, y) ])
in
match scode with
| [] -> (env, [])
| instr :: scode' ->
let stack = "" (* env#show_stack*) in
(* Printf.printf "insn=%s, stack=%s\n%!" (GT.show(insn) instr) (env#show_stack); *)
let env', code' =
if env#is_barrier then
match instr with
| LABEL s ->
if env#has_stack s then
(env#drop_barrier#retrieve_stack s, [ Label s ])
else (env#drop_stack, [])
| FLABEL s -> (env#drop_barrier, [ Label s ])
| SLABEL s -> (env, [ Label s ])
| _ -> (env, [])
else
match instr with
| PUBLIC name -> (env#register_public name, [])
| EXTERN name -> (env#register_extern name, [])
| IMPORT _ -> (env, [])
| CLOSURE (name, closure) ->
let l, env = env#allocate in
let env, push_closure_code =
List.fold_left
(fun (env, code) c ->
let cr, env = env#allocate in
(env, Mov (env#loc c, cr) :: code))
(env, []) closure
in
let env, call_code =
call env ".closure" (1 + List.length closure) false
in
(env, push_closure_code @ (Mov (M ("$" ^ name), l) :: call_code))
| CONST n ->
let s, env' = env#allocate in
(env', [ Mov (L (box n), s) ])
| STRING s ->
let s, env = env#string s in
let l, env = env#allocate in
let env, call = call env ".string" 1 false in
(env, Mov (M ("$" ^ s), l) :: call)
| LDA x ->
let s, env' = (env#variable x)#allocate in
let s', env'' = env'#allocate in
(env'', [ Lea (env'#loc x, rax); Mov (rax, s); Mov (rax, s') ])
| LD x -> (
let s, env' = (env#variable x)#allocate in
( env',
match s with
| S _ | M _ -> [ Mov (env'#loc x, rax); Mov (rax, s) ]
| _ -> [ Mov (env'#loc x, s) ] ))
| ST x -> (
let env' = env#variable x in
let s = env'#peek in
( env',
match s with
| S _ | M _ -> [ Mov (s, rax); Mov (rax, env'#loc x) ]
| _ -> [ Mov (s, env'#loc x) ] ))
| STA -> call env ".sta" 3 false
| STI -> (
let v, env = env#pop in
let x = env#peek in
( env,
match x with
| S _ | M _ ->
[
Mov (v, rdx);
Mov (x, rax);
Mov (rdx, I (0, rax));
Mov (rdx, x);
]
| _ -> [ Mov (v, rax); Mov (rax, I (0, x)); Mov (rax, x) ] ))
| BINOP op -> compile_binop env op
| LABEL s | FLABEL s | SLABEL s -> (env, [ Label s ])
| JMP l -> ((env#set_stack l)#set_barrier, [ Jmp l ])
| CJMP (s, l) ->
let x, env = env#pop in
( env#set_stack l,
[ Sar1 x; (*!!!*) Binop ("cmp", L 0, x); CJmp (s, l) ] )
| BEGIN (f, nargs, nlocals, closure, args, scopes) ->
let rec stabs_scope scope =
let names =
List.map
(fun (name, index) ->
Meta
(Printf.sprintf "\t.stabs \"%s:1\",128,0,0,-%d" name
(stack_offset index)))
scope.names
in
names
@ (if names = [] then []
else
[
Meta
(Printf.sprintf "\t.stabn 192,0,0,%s-%s" scope.blab f);
])
@ (List.flatten @@ List.map stabs_scope scope.subs)
@
if names = [] then []
else
[
Meta
(Printf.sprintf "\t.stabn 224,0,0,%s-%s" scope.elab f);
]
in
let name =
if f.[0] = 'L' then String.sub f 1 (String.length f - 1)
else f
in
env#assert_empty_stack;
let has_closure = closure <> [] in
let env = env#enter f nargs nlocals has_closure in
( env,
[ Meta (Printf.sprintf "\t.type %s, @function" name) ]
@ (if f = "main" then []
else
[
Meta
(Printf.sprintf "\t.stabs \"%s:F1\",36,0,0,%s" name f);
]
@ List.mapi
(fun i a ->
Meta
(Printf.sprintf "\t.stabs \"%s:p1\",160,0,0,%d" a
((i * 4) + 8)))
args
@ List.flatten
@@ List.map stabs_scope scopes)
@ [ Meta "\t.cfi_startproc" ]
@ (if f = cmd#topname then
[
Mov (M "_init", rax);
Binop ("test", rax, rax);
CJmp ("z", "_continue");
Ret;
Label "_ERROR";
Call "Lbinoperror";
Ret;
Label "_ERROR2";
Call "Lbinoperror2";
Ret;
Label "_continue";
Mov (L 1, M "_init");
]
else [])
@ [
Push rbp;
(* romanv: incorrect *)
Meta "\t.cfi_def_cfa_offset\t8";
Meta "\t.cfi_offset 5, -8";
Mov (rsp, rbp);
Meta "\t.cfi_def_cfa_register\t5";
Binop ("-", M ("$" ^ env#lsize), rsp);
Mov (rdi, r12);
Mov (rsi, r13);
Mov (rcx, r14);
Mov (rsp, rdi);
Mov (M "$filler", rsi);
Mov (M ("$" ^ env#allocated_size), rcx);
Repmovsl;
Mov (r12, rdi);
Mov (r13, rsi);
Mov (r14, rcx);
]
@ (if f = "main" then
[
Push (R Registers.rdi);
Push (R Registers.rsi);
Call "__gc_init";
Pop (R Registers.rsi);
Pop (R Registers.rdi);
Call "set_args";
]
else [])
@
if f = cmd#topname then
List.map
(fun i -> Call ("init" ^ i))
(List.filter (fun i -> i <> "Std") imports)
else [] )
| END ->
let x, env = env#pop in
env#assert_empty_stack;
let name = env#fname in
( env#leave,
[
Mov (x, rax);
(*!!*)
Label env#epilogue;
Mov (rbp, rsp);
Pop rbp;
]
@ (if name = "main" then [ Binop ("^", rax, rax) ] else [])
@ [
Meta "\t.cfi_restore\t5";
Meta "\t.cfi_def_cfa\t4, 4";
Ret;
Meta "\t.cfi_endproc";
Meta
(Printf.sprintf "\t.set\t%s,\t%d" env#lsize
(if env#allocated * word_size mod 16 == 0 then
env#allocated * word_size
else 8 + (env#allocated * word_size)));
Meta
(Printf.sprintf "\t.set\t%s,\t%d" env#allocated_size
env#allocated);
Meta (Printf.sprintf "\t.size %s, .-%s" name name);
] )
| RET ->
let x = env#peek in
(env, [ Mov (x, rax); Jmp env#epilogue ])
| ELEM -> call env ".elem" 2 false
| CALL (f, n, tail) -> call env f n tail
| CALLC (n, tail) -> callc env n tail
| SEXP (t, n) ->
let s, env = env#allocate in
let env, code = call env ".sexp" (n + 1) false in
(env, [ Mov (L (box (env#hash t)), s) ] @ code)
| DROP -> (snd env#pop, [])
| DUP ->
let x = env#peek in
let s, env = env#allocate in
(env, mov x s)
| SWAP ->
let x, y = env#peek2 in
(env, [ Push x; Push y; Pop x; Pop y ])
| TAG (t, n) ->
let s1, env = env#allocate in
let s2, env = env#allocate in
let env, code = call env ".tag" 3 false in
( env,
[ Mov (L (box (env#hash t)), s1); Mov (L (box n), s2) ] @ code
)
| ARRAY n ->
let s, env = env#allocate in
let env, code = call env ".array_patt" 2 false in
(env, [ Mov (L (box n), s) ] @ code)
| PATT StrCmp -> call env ".string_patt" 2 false
| PATT patt ->
call env
(match patt with
| Boxed -> ".boxed_patt"
| UnBoxed -> ".unboxed_patt"
| Array -> ".array_tag_patt"
| String -> ".string_tag_patt"
| Sexp -> ".sexp_tag_patt"
| Closure -> ".closure_tag_patt"
| StrCmp ->
failwith
(Printf.sprintf "Unexpected pattern: StrCmp %s: %d"
__FILE__ __LINE__))
1 false
| LINE line -> env#gen_line line
| FAIL ((line, col), value) ->
let v, env = if value then (env#peek, env) else env#pop in
let s, env = env#string cmd#get_infile in
let vr, env = env#allocate in
let sr, env = env#allocate in
let liner, env = env#allocate in
let colr, env = env#allocate in
let env, code = call env ".match_failure" 4 false in
let _, env = env#pop in
( env,
[
Mov (L col, colr);
Mov (L line, liner);
Mov (M ("$" ^ s), sr);
Mov (v, vr);
]
@ code )
| i ->
invalid_arg
(Printf.sprintf "invalid SM insn: %s\n" (GT.show insn i))
in
let env'', code'' = compile' env' scode' in
( env'',
[ Meta (Printf.sprintf "# %s / %s" (GT.show SM.insn instr) stack) ]
@ code' @ code'' )
in
compile' env code
module AbstractSymbolicStack : sig
type 'a t
type 'a symbolic_location = Stack of int | Register of 'a
val empty : 'a array -> 'a t
val is_empty : _ t -> bool
val live_registers : 'a t -> 'a list
val stack_size : _ t -> int
val allocate : 'a t -> 'a t * 'a symbolic_location
val pop : 'a t -> 'a t * 'a symbolic_location
val peek : 'a t -> 'a symbolic_location
val peek2 : 'a t -> 'a symbolic_location * 'a symbolic_location
end = struct
type 'a symbolic_location = Stack of int | Register of 'a
(* Last allocated position on symbolic stack *)
type stack_state = S of int | R of int | E
type 'a t = stack_state * 'a array
let empty registers = (E, registers)
let next (state, registers) =
let state =
match state with
| S n -> S (n + 1)
| R n when n + 1 = Array.length registers -> S 0
| R n -> R (n + 1)
| E -> R 0
in
(state, registers)
let previos (state, registers) =
let state =
match state with
| S 0 -> R (Array.length registers - 1)
| S n -> S (n - 1)
| R 0 -> E
| R n -> R (n - 1)
| E -> failwith (Printf.sprintf "Empty stack %s: %d" __FILE__ __LINE__)
in
(state, registers)
let location (state, registers) =
match state with
| S n -> Stack n
| R n -> Register registers.(n)
| E -> failwith (Printf.sprintf "Empty stack %s: %d" __FILE__ __LINE__)
let is_empty (state, _) = match state with E -> true | _ -> false
let live_registers (stack, registers) =
match stack with
| S _ -> Array.to_list registers
| R n -> Array.to_list (Array.sub registers 0 (n + 1))
| E -> []
let stack_size (state, _) = match state with S n -> n + 1 | R _ | E -> 0
let allocate state =
let state = next state in
(state, location state)
let pop stack = (previos stack, location stack)
let peek stack = location stack
let peek2 stack = (location stack, location (previos stack))
end
module SymbolicStack : sig
type t
val empty : int -> int -> t
val is_empty : t -> bool
val live_registers : t -> opnd list
val stack_size : t -> int
val allocate : t -> t * opnd
val pop : t -> t * opnd
val peek : t -> opnd
val peek2 : t -> opnd * opnd
end = struct
type t = { state : register AbstractSymbolicStack.t; nlocals : int }
(* romanv: add free args registers? *)
let empty _nargs nlocals =
{
state = AbstractSymbolicStack.empty Registers.extra_caller_saved_registers;
nlocals;
}
let opnd_from_loc v = function
| AbstractSymbolicStack.Register r -> R r
| AbstractSymbolicStack.Stack n -> S (n + v.nlocals)
let is_empty v = AbstractSymbolicStack.is_empty v.state
let live_registers v =
List.map (fun r -> R r) (AbstractSymbolicStack.live_registers v.state)
let stack_size v = AbstractSymbolicStack.stack_size v.state
let allocate v =
let state, loc = AbstractSymbolicStack.allocate v.state in
({ v with state }, opnd_from_loc v loc)
let pop v =
let state, loc = AbstractSymbolicStack.pop v.state in
({ v with state }, opnd_from_loc v loc)
let peek v = opnd_from_loc v (AbstractSymbolicStack.peek v.state)
let peek2 v =
let loc1, loc2 = AbstractSymbolicStack.peek2 v.state in
(opnd_from_loc v loc1, opnd_from_loc v loc2)
end
(* Environment for symbolic stack machine *)
(* A set of strings *)
module S = Set.Make (String)
(* A map indexed by strings *)
module M = Map.Make (String)
(* Environment implementation *)
class env prg =
let chars =
"_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'"
in
let argument_registers =
Array.map (fun r -> R r) Registers.argument_registers
in
let num_of_argument_registers = Array.length argument_registers in
(* let make_assoc l i =
List.combine l (List.init (List.length l) (fun x -> x + i))
in *)
(* let rec assoc x = function
| [] -> raise Not_found
| l :: ls -> ( try List.assoc x l with Not_found -> assoc x ls)
in *)
object (self)
inherit SM.indexer prg
val globals = S.empty (* a set of global variables *)
val stringm = M.empty (* a string map *)
val scount = 0 (* string count *)
val stack_slots = 0 (* maximal number of stack positions *)
val static_size = 0 (* static data size *)
val stack = SymbolicStack.empty 0 0 (* symbolic stack *)
val nargs = 0 (* number of function arguments *)
val locals = [] (* function local variables *)
val fname = "" (* function name *)
val stackmap = M.empty (* labels to stack map *)
val barrier = false (* barrier condition *)
val max_locals_size = 0
val has_closure = false
val publics = S.empty
val externs = S.empty
val nlabels = 0
val first_line = true
method publics = S.elements publics
method register_public name = {<publics = S.add name publics>}
method register_extern name = {<externs = S.add name externs>}
method max_locals_size = max_locals_size
method has_closure = has_closure
method save_closure = if has_closure then [ Push r15 ] else []
method rest_closure = if has_closure then [ Pop r15 ] else []
method fname = fname
method leave =
if stack_slots > max_locals_size then {<max_locals_size = stack_slots>}
else self
method show_stack = GT.show opnd (SymbolicStack.peek stack)
method print_locals =
Printf.printf "LOCALS: size = %d\n" static_size;
List.iter
(fun l ->
Printf.printf "(";
List.iter (fun (a, i) -> Printf.printf "%s=%d " a i) l;
Printf.printf ")\n")
locals;
Printf.printf "END LOCALS\n"
(* Assert empty stack *)
method assert_empty_stack = assert (SymbolicStack.is_empty stack)
(* check barrier condition *)
method is_barrier = barrier
(* set barrier *)
method set_barrier = {<barrier = true>}
(* drop barrier *)
method drop_barrier = {<barrier = false>}
(* drop stack *)
method drop_stack = {<stack = SymbolicStack.empty nargs static_size>}
(* associates a stack to a label *)
method set_stack l =
(*Printf.printf "Setting stack for %s\n" l;*)
{<stackmap = M.add l stack stackmap>}
(* retrieves a stack for a label *)
method retrieve_stack l =
(*Printf.printf "Retrieving stack for %s\n" l;*)
try {<stack = M.find l stackmap>} with Not_found -> self
(* checks if there is a stack for a label *)
method has_stack l =
(*Printf.printf "Retrieving stack for %s\n" l;*)
M.mem l stackmap
(* gets a name for a global variable *)
method loc x =
match x with
| Value.Global name -> M ("global_" ^ name)
| Value.Fun name -> M ("$" ^ name)
| Value.Local i -> S i
| Value.Arg i when i < num_of_argument_registers -> argument_registers.(i)
| Value.Arg i -> S (-(i - num_of_argument_registers) - 1)
| Value.Access i -> I (word_size * (i + 1), r15)
(* allocates a fresh position on a symbolic stack *)
method allocate =
let stack, opnd = SymbolicStack.allocate stack in
let stack_slots =
max stack_slots (static_size + SymbolicStack.stack_size stack)
in
(opnd, {<stack_slots; stack>})
(* pops one operand from the symbolic stack *)
method pop =
let stack, opnd = SymbolicStack.pop stack in
(opnd, {<stack>})
(* is rdx register in use *)
method rdx_in_use = nargs > 2
method arguments_locations n =
if n < num_of_argument_registers then
( Array.to_list (Array.sub argument_registers 0 n)
|> List.map (fun r -> Register r),
0 )
else
( (Array.to_list argument_registers |> List.map (fun r -> Register r))
@ List.init (n - num_of_argument_registers) (fun _ -> Stack),
n - num_of_argument_registers )
(* peeks the top of the stack (the stack does not change) *)
method peek = SymbolicStack.peek stack
(* peeks two topmost values from the stack (the stack itself does not change) *)
method peek2 = SymbolicStack.peek2 stack
(* tag hash: gets a hash for a string tag *)
method hash tag =
let h = Stdlib.ref 0 in
for i = 0 to min (String.length tag - 1) 4 do
h := (!h lsl 6) lor String.index chars tag.[i]
done;
!h
(* registers a variable in the environment *)
method variable x =
match x with
| Value.Global name -> {<globals = S.add ("global_" ^ name) globals>}
| _ -> self
(* registers a string constant *)
method string x =
let escape x =
let n = String.length x in
let buf = Buffer.create (n * 2) in
let rec iterate i =
if i < n then (
(match x.[i] with
| '"' -> Buffer.add_string buf "\\\""
| '\n' -> Buffer.add_string buf "\n"
| '\t' -> Buffer.add_string buf "\t"
| c -> Buffer.add_char buf c);
iterate (i + 1))
in
iterate 0;
Buffer.contents buf
in
let x = escape x in
try (M.find x stringm, self)
with Not_found ->
let y = Printf.sprintf "string_%d" scount in
let m = M.add x y stringm in
(y, {<scount = scount + 1; stringm = m>})
(* gets number of arguments in the current function *)
method nargs = nargs
(* gets all global variables *)
method globals = S.elements (S.diff globals externs)
(* gets all string definitions *)
method strings = M.bindings stringm
(* gets a number of stack positions allocated *)
method allocated = stack_slots
method allocated_size = Printf.sprintf "LS%s_SIZE" fname
(* enters a function *)
method enter f nargs nlocals has_closure =
{<nargs
; static_size = nlocals
; stack_slots = nlocals
; stack = SymbolicStack.empty nargs nlocals
; fname = f
; has_closure
; first_line = true>}
(* returns a label for the epilogue *)
method epilogue = Printf.sprintf "L%s_epilogue" fname
(* returns a name for local size meta-symbol *)
method lsize = Printf.sprintf "L%s_SIZE" fname
(* returns a list of live registers *)
method live_registers =
Array.to_list
(Array.sub argument_registers 0
(min nargs (Array.length argument_registers)))
@ SymbolicStack.live_registers stack
(* generate a line number information for current function *)
method gen_line line =
let lab = Printf.sprintf ".L%d" nlabels in
( {<nlabels = nlabels + 1; first_line = false>},
if fname = "main" then
[ Meta (Printf.sprintf "\t.stabn 68,0,%d,%s" line lab); Label lab ]
else
(if first_line then
[ Meta (Printf.sprintf "\t.stabn 68,0,%d,0" line) ]
else [])
@ [
Meta (Printf.sprintf "\t.stabn 68,0,%d,%s-%s" line lab fname);
Label lab;
] )
end
(* Generates an assembler text for a program: first compiles the program into
the stack code, then generates x86 assember code, then prints the assembler file
*)
let genasm cmd prog =
let sm = SM.compile cmd prog in
let env, code = compile cmd (new env sm) (fst (fst prog)) sm in
let globals =
List.map (fun s -> Meta (Printf.sprintf "\t.globl\t%s" s)) env#publics
in
let data =
[ Meta "\t.data" ]
@ List.map
(fun (s, v) -> Meta (Printf.sprintf "%s:\t.string\t\"%s\"" v s))
env#strings
@ [
Meta "_init:\t.quad 0";
Meta "\t.section custom_data,\"aw\",@progbits";
Meta (Printf.sprintf "filler:\t.fill\t%d, 8, 1" env#max_locals_size);
]
@ List.concat
@@ List.map
(fun s ->
[
Meta
(Printf.sprintf "\t.stabs \"%s:S1\",40,0,0,%s"
(String.sub s (String.length "global_")
(String.length s - String.length "global_"))
s);
Meta (Printf.sprintf "%s:\t.quad\t1" s);
])
env#globals
in
let asm = Buffer.create 1024 in
List.iter
(fun i -> Buffer.add_string asm (Printf.sprintf "%s\n" @@ show i))
([
Meta (Printf.sprintf "\t.file \"%s\"" cmd#get_absolute_infile);
Meta
(Printf.sprintf "\t.stabs \"%s\",100,0,0,.Ltext"
cmd#get_absolute_infile);
]
@ globals @ data
@ [
Meta "\t.text";
Label ".Ltext";
Meta "\t.stabs \"data:t1=r1;0;4294967295;\",128,0,0,0";
]
@ code);
Buffer.contents asm
let get_std_path () =
match Sys.getenv_opt "LAMA" with Some s -> s | None -> Stdpath.path
(* Builds a program: generates the assembler file and compiles it with the gcc toolchain *)
let build cmd prog =
let find_objects imports paths =
let module S = Set.Make (String) in
let rec iterate acc s = function
| [] -> acc
| import :: imports ->
if S.mem import s then iterate acc s imports
else
let path, intfs = Interface.find import paths in
iterate
(Filename.concat path (import ^ ".o") :: acc)
(S.add import s)
((List.map (function
| `Import name -> name
| _ -> invalid_arg "must not happen")
@@ List.filter (function `Import _ -> true | _ -> false) intfs)
@ imports)
in
iterate [] (S.add "Std" S.empty) imports
in
cmd#dump_file "s" (genasm cmd prog);
cmd#dump_file "i" (Interface.gen prog);
let inc = get_std_path () in
let compiler = "gcc" in
let flags = "-no-pie" in
match cmd#get_mode with
| `Default ->
let objs = find_objects (fst @@ fst prog) cmd#get_include_paths in
let buf = Buffer.create 255 in
List.iter
(fun o ->
Buffer.add_string buf o;
Buffer.add_string buf " ")
objs;
let gcc_cmdline =
Printf.sprintf "%s %s %s %s %s.s %s %s/runtime.a" compiler flags
cmd#get_debug cmd#get_output_option cmd#basename (Buffer.contents buf)
inc
in
Sys.command gcc_cmdline
| `Compile ->
Sys.command
(Printf.sprintf "%s %s %s -c %s.s" compiler flags cmd#get_debug
cmd#basename)
| _ -> invalid_arg "must not happen"