interpreter_tree first iteration

This commit is contained in:
ProgramSnail 2023-03-26 15:20:53 +03:00
parent 7f4cd5ee9a
commit 1ba132bb06
15 changed files with 1829 additions and 1 deletions

2
.clangd Normal file
View file

@ -0,0 +1,2 @@
CompileFlags:
Add: [-std=c++17]

View file

@ -8,8 +8,10 @@ find_package(Catch2 2 REQUIRED)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall")
include_directories(include)
include(tree_sitter/api.h)
# add_executable(interpreter_tests tests/tests.cpp)
# target_link_libraries(tests PRIVATE Catch2::Catch2WithMain)
# add_executable(lang_interpreter src/main.cpp)

View file

43
include/contexts.hpp Normal file
View file

@ -0,0 +1,43 @@
#pragma once
#include <string>
#include <vector>
#include <unordered_map>
// for clangd
#include "symbols_info.hpp"
namespace info {
class ContextManager {
public:
void CallFunction(const std::vector<VariableInfo>&);
void EnterContext();
void ExitContext();
void DefineVariable(const VariableInfo& variable);
void ChangeVariableValue(const std::string& name, const Value& new_value);
const Value& GetVariableValue(const std::string& name);
private:
class Context {
public:
Context(bool hide_previous = false) : hide_previous_(hide_previous) {}
void DefineVariable(const VariableInfo& variable);
void ChangeVaraibleValue(const std::string& name, const Value& neew_value);
const Value& GetVariableValue(const std::string& name);
bool IsFirst() { return hide_previous_; }
private:
bool hide_previous_;
std::unordered_map<std::string, VariableInfo> variables_;
};
// TODO handle current namespace (for class names, function names, etc.)
// TODO ?? are global variables forbidden ??
Context global_context_;
std::vector<Context> contexts_;
};
} // namespace info

View file

View file

25
include/global_info.hpp Normal file
View file

@ -0,0 +1,25 @@
#pragma once
#include <string>
#include <unordered_map>
// for clangd
#include "symbols_info.hpp"
namespace info {
class GlobalInfo {
public:
GlobalInfo();
// ?? EnterNamespace / ExitNamespace ??
// concurrent work ??
// AddType, AddFunction
// TODO
private:
std::unordered_map<std::string, NamespaceInfo> namespaces_;
NamespaceInfo global_namespace_;
// lock for concurrency ??
};
} // namespace info

View file

@ -0,0 +1,549 @@
#pragma once
#include <string>
#include <vector>
#include <variant>
#include <memory>
// for clangd
#include "node.hpp"
namespace interpreter {
namespace tokens {
// ----------------- Declarations -----------------
using AnyIdentifier = std::string;
using NameOrOperatorIdentifier = std::string;
using NameIdentifier = std::string;
using AnyTypeIdentifier = std::string;
using TypeIdentifier = std::string;
using AbstractTypeIdentifier = std::string;
using OperatorIdentifier = std::string;
using TypeclassIdentifier = std::string;
// Sources -----------------
struct SourceFile; // TODO partitions
struct Sources;
// Namespaces, partittions -----------------
struct Partition;
struct Namespace;
// Definitions -----------------
struct ImportStatement;
struct UsageDefinition;
struct AliasDefinition;
struct VariableDefinition;
struct FunctionDeclaration;
struct FunctionDefinition;
struct AliasTypeDefinition; // | Parts of type definition
struct TypeDefinition; // |
struct TypeclassDefinition;
using SourceStatement = std::variant<
ImportStatement,
UsageDefinition,
AliasDefinition,
VariableDefinition, // ??
FunctionDeclaration,
FunctionDefinition,
AliasTypeDefinition,
TypeDefinition,
TypeclassDefinition,
Namespace>;
// Definition parts
struct ParametrizedType;
struct TupleType;
struct VariantType;
struct ParametrizedTypeclass;
using FunctionDeclarationType = std::variant<
ParametrizedType,
TupleType,
VariantType,
ParametrizedTypeclass>;
struct DefinedName;
struct DefinedAnnotatedName;
struct DefinedType;
struct DefinedTypeclass;
struct DefinitionParameter;
struct DefinitionArgument;
// Flow control -----------------
struct Match;
struct Condition;
struct WhileLoop; // WhileLoop <-> DoWhileLoop
struct ForLoop;
struct LoopLoop;
using FlowControl = std::variant<
Match,
Condition,
WhileLoop,
ForLoop,
LoopLoop>;
// Statements, expressions, blocks, etc. -----------------
struct Block;
//
struct NameExpression;
struct ScopedStatement;
using SubExpressionToken = std::variant<
NameExpression,
ScopedStatement>;
//
struct FunctionCallExpression;
struct BinaryOperatorExpression;
using SubExpression = std::variant<
FunctionCallExpression,
BinaryOperatorExpression,
SubExpressionToken>;
//
struct ReturnExpression;
enum class LoopControlExpression {
Break,
Continue,
};
using PrefixedExpression = std::variant<
ReturnExpression,
LoopControlExpression,
Block>;
//
struct LambdaFunction;
struct TypeConstructor;
struct UnaryOperatorExpression;
using Expression = std::variant<
LambdaFunction,
TypeConstructor,
PrefixedExpression,
UnaryOperatorExpression,
SubExpression>;
//
struct TupleExpression;
struct VariantExpression;
using SuperExpression = std::variant<
FlowControl,
TupleExpression,
VariantExpression,
Expression>;
//
struct ScopedStatement; // ?? scoped statement is _superexpression ??
// Operators
struct BinaryOperatorExpression;
struct UnaryOperatorExpression;
// Simple Expressions
struct FunctionCallExpression;
struct TupleExpression;
struct VariantExpression;
struct ReturnExpression;
// Lambda
struct LambdaFunction;
// Name
struct NameSuperExpression;
struct NameExpression;
struct TupleName;
struct VariantName;
struct AnnotatedName;
using AnyName = std::variant<
AnnotatedName,
TupleName,
VariantName>;
// Type
struct TypeConstructor;
// // TypeOrAnyType <-> AnyType
struct TupleType;
struct VariantType;
struct VariantType;
using AnyType = std::variant<
ParametrizedType,
TupleType,
VariantType>;
// // TypeIdentifierDefinition <-> some '.' + TypeIdentifier
using TypeIdentifierDefinition = std::string;
struct AnnotatedType;
// // TypeAnnotations - inplace ??
struct ParametrizedType;
struct TypeExpression;
using TypeSubExpression = std::variant<
AnyTypeIdentifier,
ParametrizedType>;
// Typeclass
struct AnnotatedTypeclass;
struct ParametrizedTypeclass;
struct TypeclassExpression;
// Comments [IGNORE] -----------------
// Identifiers, constants, etc. -----------------
struct FloatNumberLiteral;
struct NumberLiteral;
struct StringLiteral;
struct CharLiteral;
using Literal = std::variant<
FloatNumberLiteral,
NumberLiteral,
StringLiteral,
CharLiteral>;
//
using NameSubSuperExpression = std::variant<
NameIdentifier,
Literal,
SuperExpression>;
// ----------------- Sources -----------------
struct SourceFile : public Node {
std::vector<std::variant<SourceStatement, Partition>> statements;
};
struct Sources : public Node {
std::vector<SourceStatement> statemets;
};
// ----------------- Namespaces, partittions -----------------
struct Partition : public Node {
enum class PartitionType {
Test,
Interface,
Core,
Lib,
Module, // rename ??
Exe,
};
PartitionType type;
std::unique_ptr<Sources> scope;
};
struct Namespace : public Node {
std::unique_ptr<std::variant<DefinedAnnotatedName, DefinedType>> name;
// TODO add const / var specification
std::unique_ptr<Sources> scope;
};
// ----------------- Definitions -----------------
struct ImportStatement : public Node {
std::string module_name;
std::vector<AnyIdentifier> symbols; // TODO parametric import support
};
struct UsageDefinition : public Node {
TypeIdentifier module_identifier;
std::unique_ptr<ImportStatement> import_statement;
};
struct AliasDefinition : public Node {
std::unique_ptr<DefinedType> name;
std::unique_ptr<ParametrizedType> value;
};
struct VariableDefinition : public Node {
NameIdentifier name;
std::unique_ptr<SuperExpression> value;
};
struct FunctionDeclaration : public Node {
NameIdentifier name;
std::vector<std::unique_ptr<FunctionDeclarationType>> argument_types;
};
struct FunctionDefintion : public Node {
std::unique_ptr<DefinedName> name;
std::unique_ptr<SuperExpression> value;
};
struct AliasTypeDefinition : public Node {
std::unique_ptr<DefinedType> name;
std::unique_ptr<ParametrizedType> value;
};
struct TypeDefinition : public Node {
std::unique_ptr<DefinedType> name;
std::unique_ptr<AnyType> value;
};
struct TypeclassDefinition : public Node {
std::unique_ptr<DefinedTypeclass> name;
std::vector<std::unique_ptr<FunctionDeclaration>> requirements;
};
// Definition parts -----------------
struct DefinedName : public Node {
bool is_operator = false; // other format ??
NameOrOperatorIdentifier name; // function name or operator
std::vector<std::unique_ptr<DefinitionParameter>> parameters;
std::vector<std::unique_ptr<DefinitionArgument>> arguments;
};
struct DefinedAnnotatedName : public Node {
NameIdentifier name;
std::unique_ptr<std::variant<DefinedType, DefinedTypeclass>> type;
};
struct DefinedType : public Node {
std::unique_ptr<AnnotatedType> type;
std::vector<std::unique_ptr<DefinitionParameter>> parameters;
std::vector<std::unique_ptr<DefinitionArgument>> arguments;
};
struct DefinedTypeclass : public Node {
std::unique_ptr<AnnotatedTypeclass> typeclass;
std::vector<std::unique_ptr<DefinitionParameter>> parameters;
std::vector<std::unique_ptr<DefinitionArgument>> arguments;
};
struct DefinitionParameter : public Node {
AbstractTypeIdentifier abstract_type;
std::vector<std::unique_ptr<ParametrizedTypeclass>> typeclasses;
};
struct DefinitionArgument : public Node {
NameIdentifier name;
std::vector<std::unique_ptr<ParametrizedType>> types;
};
// ----------------- Flow control -----------------
struct MatchCase {
std::unique_ptr<Expression> value;
std::unique_ptr<Expression> condition;
std::unique_ptr<Expression> statement;
};
struct Match : public Node {
std::unique_ptr<Expression> value;
std::vector<MatchCase> matches;
};
struct Condition : public Node {
std::vector<std::unique_ptr<Expression>> conditions; // if, elif
std::vector<std::unique_ptr<Expression>> stetemets; // if, elif, else
};
struct WhileLoop : public Node { // WhileLoop <-> DoWhileLoop
std::unique_ptr<Expression> condition;
std::unique_ptr<Expression> statement;
};
struct ForLoop : public Node {
std::unique_ptr<AnyName> variable;
std::unique_ptr<Expression> interval;
std::unique_ptr<Expression> statement;
};
struct LoopLoop : public Node {
std::unique_ptr<Expression> statement;
};
// ----------------- Statements, expressions, blocks, etc. -----------------
using BlockStatement = std::variant<
Expression,
AliasDefinition,
VariableDefinition,
FlowControl,
PrefixedExpression>;
struct Block : public Node {
std::vector<std::unique_ptr<BlockStatement>> statements;
};
struct ScopedStatement : public Node {
std::unique_ptr<SuperExpression> statement;
};
// Operators -----------------
struct BinaryOperatorExpression : public Node {
OperatorIdentifier operator_name;
std::unique_ptr<SubExpression> left_expression;
std::unique_ptr<SubExpression> right_expression;
};
struct UnaryOperatorExpression : public Node { // TODO fix prescendence
OperatorIdentifier operator_name;
std::unique_ptr<Expression> expression;
};
// Simple Expressions -----------------
using FunctionArgument = std::variant<SubExpressionToken, TypeSubExpression>;
struct FunctionCallExpression : public Node {
std::unique_ptr<NameSuperExpression> name;
std::vector<std::unique_ptr<FunctionArgument>> arguments;
};
struct TupleExpression : public Node {
std::vector<std::unique_ptr<SubExpression>> expressions;
};
struct VariantExpression : public Node {
std::vector<std::unique_ptr<SubExpression>> expressions;
};
struct ReturnExpression : public Node {
std::unique_ptr<Expression> expression;
};
// Lambda -----------------
struct LambdaFunction : public Node {
std::vector<std::unique_ptr<DefinitionParameter>> parameters;
std::vector<std::unique_ptr<DefinitionArgument>> arguments;
std::unique_ptr<Expression> expression;
};
// Name -----------------
struct NameSuperExpression : public Node {
std::vector<std::unique_ptr<TypeSubExpression>> namespaces;
std::vector<std::unique_ptr<NameSubSuperExpression>> expressions; // last is not SuperExpression
};
struct NameExpression : public Node {
std::vector<TypeSubExpression> namespaces;
std::vector<NameIdentifier> names;
};
struct TupleName : public Node {
std::vector<std::unique_ptr<AnnotatedName>> names;
};
struct VariantName : public Node {
std::vector<std::unique_ptr<AnnotatedName>> names;
};
struct AnnotatedName : public Node {
NameIdentifier name;
std::unique_ptr<ParametrizedType> type; // optional
};
// TODO ?? mark all optional fields ??
// Type -----------------
struct TypeConstructor : public Node {
std::unique_ptr<ParametrizedType> type;
std::vector<std::pair<NameIdentifier, std::unique_ptr<SubExpression>>> parameters;
};
struct TupleType : public Node {
TypeIdentifierDefinition type; // optional
std::vector<std::pair<NameIdentifier, std::unique_ptr<AnyType>>> entities; // NameIdentifier is optional
};
struct VariantType : public Node {
TypeIdentifierDefinition type; // optional
std::vector<std::pair<TypeIdentifierDefinition, std::unique_ptr<TupleType>>> constructors;
};
struct AnnotatedType : public Node {
std::unique_ptr<TypeExpression> type_expression;
std::vector<std::unique_ptr<ParametrizedTypeclass>> annotations;
};
using TypeParameter = std::variant<ParametrizedType, Expression>;
struct ParametrizedType : public Node {
std::unique_ptr<TypeExpression> type_expression;
std::vector<std::unique_ptr<TypeParameter>> parameters;
};
struct TypeExpression : public Node {
std::vector<std::unique_ptr<TypeSubExpression>> namespaces;
AnyTypeIdentifier type;
};
// Typeclass -----------------
struct AnnotatedTypeclass : public Node {
std::unique_ptr<TypeclassExpression> typeclass_expression;
std::vector<std::unique_ptr<ParametrizedTypeclass>> annotations;
};
struct ParametrizedTypeclass : public Node {
std::unique_ptr<TypeclassExpression> typeclass_expression;
std::vector<std::unique_ptr<TypeParameter>> parameters;
};
struct TypeclassExpression : public Node {
std::vector<std::unique_ptr<TypeSubExpression>> namespaces;
TypeclassIdentifier typeclass;
};
// ----------------- Comments [IGNORE] -----------------
// ----------------- Identifiers, constants, etc. -----------------
struct FloatNumberLiteral : public Node {
double value;
};
struct NumberLiteral : public Node {
int64_t value;
};
struct StringLiteral : public Node {
std::string value;
};
struct CharLiteral : public Node {
char value;
};
} // namespace tokens
} // namespace interpereter

36
include/node.hpp Normal file
View file

@ -0,0 +1,36 @@
#pragma once
#include <cstddef>
// for clangd
#include "parse_tree.hpp"
namespace info {
class GlobalInfo;
class Context;
} // namespace info
namespace interpreter {
class Visitor;
struct Node {
//public:
Node(info::GlobalInfo& global_info) : global_info_(global_info) {}
virtual void Accept(Visitor* visitor);
/* ------------ use visitor instead ------------
virtual void build(parser::ParseTree::Cursor& cursor) = 0; // build tree from parse tree
virtual void find_symbols() = 0; // find types, typeclasses, namespaces, ..
virtual void assign_types() = 0; // typecheck
virtual void execute(info::Context& context) = 0; // execute part of tree
*/
/*private:
size_t start_position_; // ??
size_t end_position_; // ??
Node* parent_; // ??
info::GlobalInfo& global_info_;*/
};
} // namespace interpreter

64
include/parse_tree.hpp Normal file
View file

@ -0,0 +1,64 @@
#pragma once
#include <string>
// for clangd
#include "tree_sitter/api.h"
namespace parser {
class ParseTree {
public:
class Node {
public:
Node() = delete;
std::string GetType();
std::pair<size_t, size_t> GetStartPoint();
std::pair<size_t, size_t> GetEndPoint();
std::string GetAsSExpression();
bool IsNull();
bool IsNamed();
bool IsMissing();
bool IsExtra(); // comments, etc.
bool HasError();
Node NthChild(size_t n);
size_t ChildCount();
Node NthNamedChild(size_t n);
size_t NamedChildCount();
Node ChildByName(const std::string& name);
// ?? use field id instaed of name ??
// ?? node equality check needed ??
private:
TSNode node_;
};
class Cursor {
public:
Cursor(const Node& node);
void ResetTo(const Node& node);
Node GetCurrentNode();
std::string GetCurrentNodeName();
bool GoToParent();
bool GoToNextSibling();
bool GoToFirstChild();
private:
TSTreeCursor cursor_;
};
ParseTree(const std::string& input);
Node GetRoot();
private:
TSTree* tree_;
};
} // namespace parser

96
include/symbols_info.hpp Normal file
View file

@ -0,0 +1,96 @@
#pragma once
#include <string>
#include <variant>
#include <optional>
#include <vector>
#include <unordered_map>
// for clangd
namespace interpreter {
class Node;
} // namespace interpreter
namespace info {
using NumberValue = long long;
using FloatNumberValue = float;
using StringValue = std::string;
struct SimpleValue {
std::variant<NumberValue, FloatNumberValue, StringValue> value;
};
struct Value {
enum class ValueStructure {
Simple, // one value
Variant, // one value from list, can have arguments
// MultiVariant, // constructed variant // ??
Tuple, // tuple of values
};
ValueStructure structure;
std::vector<std::variant<SimpleValue, Value>> values;
};
// better variant value storage (then string) ??
struct Info {
std::string name;
};
struct VariantTypeInfo;
struct TupleTypeInfo;
struct AliasTypeInfo;
enum class BuiltInTypeInfo {
StringT,
IntT,
FloatT,
};
using TypeInfo = std::variant<VariantTypeInfo, TupleTypeInfo, AliasTypeInfo, BuiltInTypeInfo>;
struct VariableInfo : public Info {
Value value;
TypeInfo* type = nullptr;
};
// TODO lambda functions as values
// TODO aliases ??
struct TupleTypeInfo : public Info {
std::vector<std::pair<std::optional<std::string>, TypeInfo>> fields;
};
struct VariantTypeInfo : public Info {
std::vector<std::variant<std::string, TupleTypeInfo>> constructors;
// ?? any type instead of tuple type ??
};
struct AliasTypeInfo : public Info {
bool isAnotherType; // = true by default ??
TypeInfo* type = nullptr;
};
struct TypeclassInfo : public Info {
// TODO
};
struct PointerInfo {
VariableInfo* variable;
};
struct FunctionInfo : public Info {
interpreter::Node* definition;
std::vector<VariableInfo> args;
// add requirements ??
};
struct NamespaceInfo : public Info {
std::unordered_map<std::string, TypeInfo> types;
std::unordered_map<std::string, VariableInfo> variables;
std::unordered_map<std::string, FunctionInfo> functions;
std::unordered_map<std::string, NamespaceInfo> namespaces;
};
} // namespace info

View file

16
include/visitor.hpp Normal file
View file

@ -0,0 +1,16 @@
#pragma once
// for clangd
#include "interpreter_tree.hpp"
namespace interpreter {
class Visitor {
public:
virtual void Visit(Node* node) = 0; // ??
// visit(SomethingNode node)
// ...
private:
};
} // namespace interpreter

12
src/node.cpp Normal file
View file

@ -0,0 +1,12 @@
// for clangd
#include "../include/node.hpp"
#include "../include/visitor.hpp"
namespace interpreter {
void Node::Accept(Visitor* visitor) {
visitor->Visit(this);
}
} // namespace interpreter

983
tree_sitter/api.h Normal file
View file

@ -0,0 +1,983 @@
#ifndef TREE_SITTER_API_H_
#define TREE_SITTER_API_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
/****************************/
/* Section - ABI Versioning */
/****************************/
/**
* The latest ABI version that is supported by the current version of the
* library. When Languages are generated by the Tree-sitter CLI, they are
* assigned an ABI version number that corresponds to the current CLI version.
* The Tree-sitter library is generally backwards-compatible with languages
* generated using older CLI versions, but is not forwards-compatible.
*/
#define TREE_SITTER_LANGUAGE_VERSION 14
/**
* The earliest ABI version that is supported by the current version of the
* library.
*/
#define TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION 13
/*******************/
/* Section - Types */
/*******************/
typedef uint16_t TSSymbol;
typedef uint16_t TSFieldId;
typedef struct TSLanguage TSLanguage;
typedef struct TSParser TSParser;
typedef struct TSTree TSTree;
typedef struct TSQuery TSQuery;
typedef struct TSQueryCursor TSQueryCursor;
typedef enum {
TSInputEncodingUTF8,
TSInputEncodingUTF16,
} TSInputEncoding;
typedef enum {
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
} TSSymbolType;
typedef struct {
uint32_t row;
uint32_t column;
} TSPoint;
typedef struct {
TSPoint start_point;
TSPoint end_point;
uint32_t start_byte;
uint32_t end_byte;
} TSRange;
typedef struct {
void *payload;
const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read);
TSInputEncoding encoding;
} TSInput;
typedef enum {
TSLogTypeParse,
TSLogTypeLex,
} TSLogType;
typedef struct {
void *payload;
void (*log)(void *payload, TSLogType, const char *);
} TSLogger;
typedef struct {
uint32_t start_byte;
uint32_t old_end_byte;
uint32_t new_end_byte;
TSPoint start_point;
TSPoint old_end_point;
TSPoint new_end_point;
} TSInputEdit;
typedef struct {
uint32_t context[4];
const void *id;
const TSTree *tree;
} TSNode;
typedef struct {
const void *tree;
const void *id;
uint32_t context[2];
} TSTreeCursor;
typedef struct {
TSNode node;
uint32_t index;
} TSQueryCapture;
typedef enum {
TSQuantifierZero = 0, // must match the array initialization value
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
} TSQuantifier;
typedef struct {
uint32_t id;
uint16_t pattern_index;
uint16_t capture_count;
const TSQueryCapture *captures;
} TSQueryMatch;
typedef enum {
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
} TSQueryPredicateStepType;
typedef struct {
TSQueryPredicateStepType type;
uint32_t value_id;
} TSQueryPredicateStep;
typedef enum {
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
} TSQueryError;
/********************/
/* Section - Parser */
/********************/
/**
* Create a new parser.
*/
TSParser *ts_parser_new(void);
/**
* Delete the parser, freeing all of the memory that it used.
*/
void ts_parser_delete(TSParser *parser);
/**
* Set the language that the parser should use for parsing.
*
* Returns a boolean indicating whether or not the language was successfully
* assigned. True means assignment succeeded. False means there was a version
* mismatch: the language was generated with an incompatible version of the
* Tree-sitter CLI. Check the language's version using `ts_language_version`
* and compare it to this library's `TREE_SITTER_LANGUAGE_VERSION` and
* `TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION` constants.
*/
bool ts_parser_set_language(TSParser *self, const TSLanguage *language);
/**
* Get the parser's current language.
*/
const TSLanguage *ts_parser_language(const TSParser *self);
/**
* Set the ranges of text that the parser should include when parsing.
*
* By default, the parser will always include entire documents. This function
* allows you to parse only a *portion* of a document but still return a syntax
* tree whose ranges match up with the document as a whole. You can also pass
* multiple disjoint ranges.
*
* The second and third parameters specify the location and length of an array
* of ranges. The parser does *not* take ownership of these ranges; it copies
* the data, so it doesn't matter how these ranges are allocated.
*
* If `length` is zero, then the entire document will be parsed. Otherwise,
* the given ranges must be ordered from earliest to latest in the document,
* and they must not overlap. That is, the following must hold for all
* `i` < `length - 1`: ranges[i].end_byte <= ranges[i + 1].start_byte
*
* If this requirement is not satisfied, the operation will fail, the ranges
* will not be assigned, and this function will return `false`. On success,
* this function returns `true`
*/
bool ts_parser_set_included_ranges(
TSParser *self,
const TSRange *ranges,
uint32_t length
);
/**
* Get the ranges of text that the parser will include when parsing.
*
* The returned pointer is owned by the parser. The caller should not free it
* or write to it. The length of the array will be written to the given
* `length` pointer.
*/
const TSRange *ts_parser_included_ranges(
const TSParser *self,
uint32_t *length
);
/**
* Use the parser to parse some source code and create a syntax tree.
*
* If you are parsing this document for the first time, pass `NULL` for the
* `old_tree` parameter. Otherwise, if you have already parsed an earlier
* version of this document and the document has since been edited, pass the
* previous syntax tree so that the unchanged parts of it can be reused.
* This will save time and memory. For this to work correctly, you must have
* already edited the old syntax tree using the `ts_tree_edit` function in a
* way that exactly matches the source code changes.
*
* The `TSInput` parameter lets you specify how to read the text. It has the
* following three fields:
* 1. `read`: A function to retrieve a chunk of text at a given byte offset
* and (row, column) position. The function should return a pointer to the
* text and write its length to the `bytes_read` pointer. The parser does
* not take ownership of this buffer; it just borrows it until it has
* finished reading it. The function should write a zero value to the
* `bytes_read` pointer to indicate the end of the document.
* 2. `payload`: An arbitrary pointer that will be passed to each invocation
* of the `read` function.
* 3. `encoding`: An indication of how the text is encoded. Either
* `TSInputEncodingUTF8` or `TSInputEncodingUTF16`.
*
* This function returns a syntax tree on success, and `NULL` on failure. There
* are three possible reasons for failure:
* 1. The parser does not have a language assigned. Check for this using the
`ts_parser_language` function.
* 2. Parsing was cancelled due to a timeout that was set by an earlier call to
* the `ts_parser_set_timeout_micros` function. You can resume parsing from
* where the parser left out by calling `ts_parser_parse` again with the
* same arguments. Or you can start parsing from scratch by first calling
* `ts_parser_reset`.
* 3. Parsing was cancelled using a cancellation flag that was set by an
* earlier call to `ts_parser_set_cancellation_flag`. You can resume parsing
* from where the parser left out by calling `ts_parser_parse` again with
* the same arguments.
*/
TSTree *ts_parser_parse(
TSParser *self,
const TSTree *old_tree,
TSInput input
);
/**
* Use the parser to parse some source code stored in one contiguous buffer.
* The first two parameters are the same as in the `ts_parser_parse` function
* above. The second two parameters indicate the location of the buffer and its
* length in bytes.
*/
TSTree *ts_parser_parse_string(
TSParser *self,
const TSTree *old_tree,
const char *string,
uint32_t length
);
/**
* Use the parser to parse some source code stored in one contiguous buffer with
* a given encoding. The first four parameters work the same as in the
* `ts_parser_parse_string` method above. The final parameter indicates whether
* the text is encoded as UTF8 or UTF16.
*/
TSTree *ts_parser_parse_string_encoding(
TSParser *self,
const TSTree *old_tree,
const char *string,
uint32_t length,
TSInputEncoding encoding
);
/**
* Instruct the parser to start the next parse from the beginning.
*
* If the parser previously failed because of a timeout or a cancellation, then
* by default, it will resume where it left off on the next call to
* `ts_parser_parse` or other parsing functions. If you don't want to resume,
* and instead intend to use this parser to parse some other document, you must
* call `ts_parser_reset` first.
*/
void ts_parser_reset(TSParser *self);
/**
* Set the maximum duration in microseconds that parsing should be allowed to
* take before halting.
*
* If parsing takes longer than this, it will halt early, returning NULL.
* See `ts_parser_parse` for more information.
*/
void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout);
/**
* Get the duration in microseconds that parsing is allowed to take.
*/
uint64_t ts_parser_timeout_micros(const TSParser *self);
/**
* Set the parser's current cancellation flag pointer.
*
* If a non-null pointer is assigned, then the parser will periodically read
* from this pointer during parsing. If it reads a non-zero value, it will
* halt early, returning NULL. See `ts_parser_parse` for more information.
*/
void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag);
/**
* Get the parser's current cancellation flag pointer.
*/
const size_t *ts_parser_cancellation_flag(const TSParser *self);
/**
* Set the logger that a parser should use during parsing.
*
* The parser does not take ownership over the logger payload. If a logger was
* previously assigned, the caller is responsible for releasing any memory
* owned by the previous logger.
*/
void ts_parser_set_logger(TSParser *self, TSLogger logger);
/**
* Get the parser's current logger.
*/
TSLogger ts_parser_logger(const TSParser *self);
/**
* Set the file descriptor to which the parser should write debugging graphs
* during parsing. The graphs are formatted in the DOT language. You may want
* to pipe these graphs directly to a `dot(1)` process in order to generate
* SVG output. You can turn off this logging by passing a negative number.
*/
void ts_parser_print_dot_graphs(TSParser *self, int file);
/******************/
/* Section - Tree */
/******************/
/**
* Create a shallow copy of the syntax tree. This is very fast.
*
* You need to copy a syntax tree in order to use it on more than one thread at
* a time, as syntax trees are not thread safe.
*/
TSTree *ts_tree_copy(const TSTree *self);
/**
* Delete the syntax tree, freeing all of the memory that it used.
*/
void ts_tree_delete(TSTree *self);
/**
* Get the root node of the syntax tree.
*/
TSNode ts_tree_root_node(const TSTree *self);
/**
* Get the root node of the syntax tree, but with its position
* shifted forward by the given offset.
*/
TSNode ts_tree_root_node_with_offset(
const TSTree *self,
uint32_t offset_bytes,
TSPoint offset_point
);
/**
* Get the language that was used to parse the syntax tree.
*/
const TSLanguage *ts_tree_language(const TSTree *);
/**
* Get the array of included ranges that was used to parse the syntax tree.
*
* The returned pointer must be freed by the caller.
*/
TSRange *ts_tree_included_ranges(const TSTree *, uint32_t *length);
/**
* Edit the syntax tree to keep it in sync with source code that has been
* edited.
*
* You must describe the edit both in terms of byte offsets and in terms of
* (row, column) coordinates.
*/
void ts_tree_edit(TSTree *self, const TSInputEdit *edit);
/**
* Compare an old edited syntax tree to a new syntax tree representing the same
* document, returning an array of ranges whose syntactic structure has changed.
*
* For this to work correctly, the old syntax tree must have been edited such
* that its ranges match up to the new tree. Generally, you'll want to call
* this function right after calling one of the `ts_parser_parse` functions.
* You need to pass the old tree that was passed to parse, as well as the new
* tree that was returned from that function.
*
* The returned array is allocated using `malloc` and the caller is responsible
* for freeing it using `free`. The length of the array will be written to the
* given `length` pointer.
*/
TSRange *ts_tree_get_changed_ranges(
const TSTree *old_tree,
const TSTree *new_tree,
uint32_t *length
);
/**
* Write a DOT graph describing the syntax tree to the given file.
*/
void ts_tree_print_dot_graph(const TSTree *, int file_descriptor);
/******************/
/* Section - Node */
/******************/
/**
* Get the node's type as a null-terminated string.
*/
const char *ts_node_type(TSNode);
/**
* Get the node's type as a numerical id.
*/
TSSymbol ts_node_symbol(TSNode);
/**
* Get the node's start byte.
*/
uint32_t ts_node_start_byte(TSNode);
/**
* Get the node's start position in terms of rows and columns.
*/
TSPoint ts_node_start_point(TSNode);
/**
* Get the node's end byte.
*/
uint32_t ts_node_end_byte(TSNode);
/**
* Get the node's end position in terms of rows and columns.
*/
TSPoint ts_node_end_point(TSNode);
/**
* Get an S-expression representing the node as a string.
*
* This string is allocated with `malloc` and the caller is responsible for
* freeing it using `free`.
*/
char *ts_node_string(TSNode);
/**
* Check if the node is null. Functions like `ts_node_child` and
* `ts_node_next_sibling` will return a null node to indicate that no such node
* was found.
*/
bool ts_node_is_null(TSNode);
/**
* Check if the node is *named*. Named nodes correspond to named rules in the
* grammar, whereas *anonymous* nodes correspond to string literals in the
* grammar.
*/
bool ts_node_is_named(TSNode);
/**
* Check if the node is *missing*. Missing nodes are inserted by the parser in
* order to recover from certain kinds of syntax errors.
*/
bool ts_node_is_missing(TSNode);
/**
* Check if the node is *extra*. Extra nodes represent things like comments,
* which are not required the grammar, but can appear anywhere.
*/
bool ts_node_is_extra(TSNode);
/**
* Check if a syntax node has been edited.
*/
bool ts_node_has_changes(TSNode);
/**
* Check if the node is a syntax error or contains any syntax errors.
*/
bool ts_node_has_error(TSNode);
/**
* Get the node's immediate parent.
*/
TSNode ts_node_parent(TSNode);
/**
* Get the node's child at the given index, where zero represents the first
* child.
*/
TSNode ts_node_child(TSNode, uint32_t);
/**
* Get the field name for node's child at the given index, where zero represents
* the first child. Returns NULL, if no field is found.
*/
const char *ts_node_field_name_for_child(TSNode, uint32_t);
/**
* Get the node's number of children.
*/
uint32_t ts_node_child_count(TSNode);
/**
* Get the node's *named* child at the given index.
*
* See also `ts_node_is_named`.
*/
TSNode ts_node_named_child(TSNode, uint32_t);
/**
* Get the node's number of *named* children.
*
* See also `ts_node_is_named`.
*/
uint32_t ts_node_named_child_count(TSNode);
/**
* Get the node's child with the given field name.
*/
TSNode ts_node_child_by_field_name(
TSNode self,
const char *field_name,
uint32_t field_name_length
);
/**
* Get the node's child with the given numerical field id.
*
* You can convert a field name to an id using the
* `ts_language_field_id_for_name` function.
*/
TSNode ts_node_child_by_field_id(TSNode, TSFieldId);
/**
* Get the node's next / previous sibling.
*/
TSNode ts_node_next_sibling(TSNode);
TSNode ts_node_prev_sibling(TSNode);
/**
* Get the node's next / previous *named* sibling.
*/
TSNode ts_node_next_named_sibling(TSNode);
TSNode ts_node_prev_named_sibling(TSNode);
/**
* Get the node's first child that extends beyond the given byte offset.
*/
TSNode ts_node_first_child_for_byte(TSNode, uint32_t);
/**
* Get the node's first named child that extends beyond the given byte offset.
*/
TSNode ts_node_first_named_child_for_byte(TSNode, uint32_t);
/**
* Get the smallest node within this node that spans the given range of bytes
* or (row, column) positions.
*/
TSNode ts_node_descendant_for_byte_range(TSNode, uint32_t, uint32_t);
TSNode ts_node_descendant_for_point_range(TSNode, TSPoint, TSPoint);
/**
* Get the smallest named node within this node that spans the given range of
* bytes or (row, column) positions.
*/
TSNode ts_node_named_descendant_for_byte_range(TSNode, uint32_t, uint32_t);
TSNode ts_node_named_descendant_for_point_range(TSNode, TSPoint, TSPoint);
/**
* Edit the node to keep it in-sync with source code that has been edited.
*
* This function is only rarely needed. When you edit a syntax tree with the
* `ts_tree_edit` function, all of the nodes that you retrieve from the tree
* afterward will already reflect the edit. You only need to use `ts_node_edit`
* when you have a `TSNode` instance that you want to keep and continue to use
* after an edit.
*/
void ts_node_edit(TSNode *, const TSInputEdit *);
/**
* Check if two nodes are identical.
*/
bool ts_node_eq(TSNode, TSNode);
/************************/
/* Section - TreeCursor */
/************************/
/**
* Create a new tree cursor starting from the given node.
*
* A tree cursor allows you to walk a syntax tree more efficiently than is
* possible using the `TSNode` functions. It is a mutable object that is always
* on a certain syntax node, and can be moved imperatively to different nodes.
*/
TSTreeCursor ts_tree_cursor_new(TSNode);
/**
* Delete a tree cursor, freeing all of the memory that it used.
*/
void ts_tree_cursor_delete(TSTreeCursor *);
/**
* Re-initialize a tree cursor to start at a different node.
*/
void ts_tree_cursor_reset(TSTreeCursor *, TSNode);
/**
* Get the tree cursor's current node.
*/
TSNode ts_tree_cursor_current_node(const TSTreeCursor *);
/**
* Get the field name of the tree cursor's current node.
*
* This returns `NULL` if the current node doesn't have a field.
* See also `ts_node_child_by_field_name`.
*/
const char *ts_tree_cursor_current_field_name(const TSTreeCursor *);
/**
* Get the field id of the tree cursor's current node.
*
* This returns zero if the current node doesn't have a field.
* See also `ts_node_child_by_field_id`, `ts_language_field_id_for_name`.
*/
TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *);
/**
* Move the cursor to the parent of its current node.
*
* This returns `true` if the cursor successfully moved, and returns `false`
* if there was no parent node (the cursor was already on the root node).
*/
bool ts_tree_cursor_goto_parent(TSTreeCursor *);
/**
* Move the cursor to the next sibling of its current node.
*
* This returns `true` if the cursor successfully moved, and returns `false`
* if there was no next sibling node.
*/
bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *);
/**
* Move the cursor to the first child of its current node.
*
* This returns `true` if the cursor successfully moved, and returns `false`
* if there were no children.
*/
bool ts_tree_cursor_goto_first_child(TSTreeCursor *);
/**
* Move the cursor to the first child of its current node that extends beyond
* the given byte offset or point.
*
* This returns the index of the child node if one was found, and returns -1
* if no such child was found.
*/
int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *, uint32_t);
int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *, TSPoint);
TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *);
/*******************/
/* Section - Query */
/*******************/
/**
* Create a new query from a string containing one or more S-expression
* patterns. The query is associated with a particular language, and can
* only be run on syntax nodes parsed with that language.
*
* If all of the given patterns are valid, this returns a `TSQuery`.
* If a pattern is invalid, this returns `NULL`, and provides two pieces
* of information about the problem:
* 1. The byte offset of the error is written to the `error_offset` parameter.
* 2. The type of error is written to the `error_type` parameter.
*/
TSQuery *ts_query_new(
const TSLanguage *language,
const char *source,
uint32_t source_len,
uint32_t *error_offset,
TSQueryError *error_type
);
/**
* Delete a query, freeing all of the memory that it used.
*/
void ts_query_delete(TSQuery *);
/**
* Get the number of patterns, captures, or string literals in the query.
*/
uint32_t ts_query_pattern_count(const TSQuery *);
uint32_t ts_query_capture_count(const TSQuery *);
uint32_t ts_query_string_count(const TSQuery *);
/**
* Get the byte offset where the given pattern starts in the query's source.
*
* This can be useful when combining queries by concatenating their source
* code strings.
*/
uint32_t ts_query_start_byte_for_pattern(const TSQuery *, uint32_t);
/**
* Get all of the predicates for the given pattern in the query.
*
* The predicates are represented as a single array of steps. There are three
* types of steps in this array, which correspond to the three legal values for
* the `type` field:
* - `TSQueryPredicateStepTypeCapture` - Steps with this type represent names
* of captures. Their `value_id` can be used with the
* `ts_query_capture_name_for_id` function to obtain the name of the capture.
* - `TSQueryPredicateStepTypeString` - Steps with this type represent literal
* strings. Their `value_id` can be used with the
* `ts_query_string_value_for_id` function to obtain their string value.
* - `TSQueryPredicateStepTypeDone` - Steps with this type are *sentinels*
* that represent the end of an individual predicate. If a pattern has two
* predicates, then there will be two steps with this `type` in the array.
*/
const TSQueryPredicateStep *ts_query_predicates_for_pattern(
const TSQuery *self,
uint32_t pattern_index,
uint32_t *length
);
/*
* Check if the given pattern in the query has a single root node.
*/
bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index);
/*
* Check if the given pattern in the query is 'non local'.
*
* A non-local pattern has multiple root nodes and can match within a
* repeating sequence of nodes, as specified by the grammar. Non-local
* patterns disable certain optimizations that would otherwise be possible
* when executing a query on a specific range of a syntax tree.
*/
bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index);
/*
* Check if a given pattern is guaranteed to match once a given step is reached.
* The step is specified by its byte offset in the query's source code.
*/
bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset);
/**
* Get the name and length of one of the query's captures, or one of the
* query's string literals. Each capture and string is associated with a
* numeric id based on the order that it appeared in the query's source.
*/
const char *ts_query_capture_name_for_id(
const TSQuery *,
uint32_t id,
uint32_t *length
);
/**
* Get the quantifier of the query's captures. Each capture is * associated
* with a numeric id based on the order that it appeared in the query's source.
*/
TSQuantifier ts_query_capture_quantifier_for_id(
const TSQuery *,
uint32_t pattern_id,
uint32_t capture_id
);
const char *ts_query_string_value_for_id(
const TSQuery *,
uint32_t id,
uint32_t *length
);
/**
* Disable a certain capture within a query.
*
* This prevents the capture from being returned in matches, and also avoids
* any resource usage associated with recording the capture. Currently, there
* is no way to undo this.
*/
void ts_query_disable_capture(TSQuery *, const char *, uint32_t);
/**
* Disable a certain pattern within a query.
*
* This prevents the pattern from matching and removes most of the overhead
* associated with the pattern. Currently, there is no way to undo this.
*/
void ts_query_disable_pattern(TSQuery *, uint32_t);
/**
* Create a new cursor for executing a given query.
*
* The cursor stores the state that is needed to iteratively search
* for matches. To use the query cursor, first call `ts_query_cursor_exec`
* to start running a given query on a given syntax node. Then, there are
* two options for consuming the results of the query:
* 1. Repeatedly call `ts_query_cursor_next_match` to iterate over all of the
* *matches* in the order that they were found. Each match contains the
* index of the pattern that matched, and an array of captures. Because
* multiple patterns can match the same set of nodes, one match may contain
* captures that appear *before* some of the captures from a previous match.
* 2. Repeatedly call `ts_query_cursor_next_capture` to iterate over all of the
* individual *captures* in the order that they appear. This is useful if
* don't care about which pattern matched, and just want a single ordered
* sequence of captures.
*
* If you don't care about consuming all of the results, you can stop calling
* `ts_query_cursor_next_match` or `ts_query_cursor_next_capture` at any point.
* You can then start executing another query on another node by calling
* `ts_query_cursor_exec` again.
*/
TSQueryCursor *ts_query_cursor_new(void);
/**
* Delete a query cursor, freeing all of the memory that it used.
*/
void ts_query_cursor_delete(TSQueryCursor *);
/**
* Start running a given query on a given node.
*/
void ts_query_cursor_exec(TSQueryCursor *, const TSQuery *, TSNode);
/**
* Manage the maximum number of in-progress matches allowed by this query
* cursor.
*
* Query cursors have an optional maximum capacity for storing lists of
* in-progress captures. If this capacity is exceeded, then the
* earliest-starting match will silently be dropped to make room for further
* matches. This maximum capacity is optional by default, query cursors allow
* any number of pending matches, dynamically allocating new space for them as
* needed as the query is executed.
*/
bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *);
uint32_t ts_query_cursor_match_limit(const TSQueryCursor *);
void ts_query_cursor_set_match_limit(TSQueryCursor *, uint32_t);
/**
* Set the range of bytes or (row, column) positions in which the query
* will be executed.
*/
void ts_query_cursor_set_byte_range(TSQueryCursor *, uint32_t, uint32_t);
void ts_query_cursor_set_point_range(TSQueryCursor *, TSPoint, TSPoint);
/**
* Advance to the next match of the currently running query.
*
* If there is a match, write it to `*match` and return `true`.
* Otherwise, return `false`.
*/
bool ts_query_cursor_next_match(TSQueryCursor *, TSQueryMatch *match);
void ts_query_cursor_remove_match(TSQueryCursor *, uint32_t id);
/**
* Advance to the next capture of the currently running query.
*
* If there is a capture, write its match to `*match` and its index within
* the matche's capture list to `*capture_index`. Otherwise, return `false`.
*/
bool ts_query_cursor_next_capture(
TSQueryCursor *,
TSQueryMatch *match,
uint32_t *capture_index
);
/**********************/
/* Section - Language */
/**********************/
/**
* Get the number of distinct node types in the language.
*/
uint32_t ts_language_symbol_count(const TSLanguage *);
/**
* Get a node type string for the given numerical id.
*/
const char *ts_language_symbol_name(const TSLanguage *, TSSymbol);
/**
* Get the numerical id for the given node type string.
*/
TSSymbol ts_language_symbol_for_name(
const TSLanguage *self,
const char *string,
uint32_t length,
bool is_named
);
/**
* Get the number of distinct field names in the language.
*/
uint32_t ts_language_field_count(const TSLanguage *);
/**
* Get the field name string for the given numerical id.
*/
const char *ts_language_field_name_for_id(const TSLanguage *, TSFieldId);
/**
* Get the numerical id for the given field name string.
*/
TSFieldId ts_language_field_id_for_name(const TSLanguage *, const char *, uint32_t);
/**
* Check whether the given node type id belongs to named nodes, anonymous nodes,
* or a hidden nodes.
*
* See also `ts_node_is_named`. Hidden nodes are never returned from the API.
*/
TSSymbolType ts_language_symbol_type(const TSLanguage *, TSSymbol);
/**
* Get the ABI version number for this language. This version number is used
* to ensure that languages were generated by a compatible version of
* Tree-sitter.
*
* See also `ts_parser_set_language`.
*/
uint32_t ts_language_version(const TSLanguage *);
/**********************************/
/* Section - Global Configuration */
/**********************************/
/**
* Set the allocation functions used by the library.
*
* By default, Tree-sitter uses the standard libc allocation functions,
* but aborts the process when an allocation fails. This function lets
* you supply alternative allocation functions at runtime.
*
* If you pass `NULL` for any parameter, Tree-sitter will switch back to
* its default implementation of that function.
*
* If you call this function after the library has already been used, then
* you must ensure that either:
* 1. All the existing objects have been freed.
* 2. The new allocator shares its state with the old one, so it is capable
* of freeing memory that was allocated by the old allocator.
*/
void ts_set_allocator(
void *(*new_malloc)(size_t),
void *(*new_calloc)(size_t, size_t),
void *(*new_realloc)(void *, size_t),
void (*new_free)(void *)
);
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_API_H_