type graph class

This commit is contained in:
ProgramSnail 2023-04-14 14:37:46 +03:00
parent 30ba8972e1
commit aa4e9fa721
6 changed files with 1073 additions and 22 deletions

View file

@ -7,10 +7,6 @@
#include "visitor.hpp"
#include "global_info.hpp"
// TODO:
// add/remove global variables
//
namespace interpreter {
class FindSymbolsVisitor : public Visitor {

View file

@ -12,7 +12,7 @@ namespace info {
class GlobalInfo {
public:
GlobalInfo() {
namespace_stack.push_back(&global_namespace_);
namespace_stack_.push_back(&global_namespace_);
}
void AddImport(ImportInfo&& import_info, const std::optional<std::string>& name = std::nullopt) {
@ -23,62 +23,80 @@ public:
}
}
void AddEnterNamespace(const std::string& type,
void AddEnterNamespace(const std::string& name,
const std::optional<NamespaceInfo::Modifier>& modifier = std::nullopt,
const std::optional<std::string>& variable = std::nullopt) {
NamespaceInfo* namespace_info = &namespace_stack.back()->namespaces[type].emplace_back();
namespace_stack.push_back(namespace_info);
NamespaceInfo* namespace_info = &namespace_stack_.back()->namespaces[name].emplace_back();
namespace_stack_.push_back(namespace_info);
namespace_info->modifier = modifier;
namespace_info->variable = variable;
namespace_info->type_name = type;
namespace_info->type_name = name;
}
void EnterNamespace(const std::string& name) { // TODO: enter sibling namespace, etc.
auto& namespace_parts = namespace_stack_.back()->namespaces[name];
for (auto& part : namespace_parts) {
if (part.variable == std::nullopt) {
namespace_stack_.push_back(&part);
}
}
}
void ExitAllNameNamespaces(const std::string& name) {
while(namespace_stack_.size() > 1 && namespace_stack_.back()->type_name == name) {
namespace_stack_.pop_back();
}
}
void ExitNamespace() {
if (namespace_stack.size() <= 1) {
if (namespace_stack_.size() <= 1) {
// error
return;
}
namespace_stack.pop_back();
namespace_stack_.pop_back();
}
void ToGlobalNamespace() {
namespace_stack.clear();
namespace_stack.push_back(&global_namespace_);
namespace_stack_.clear();
namespace_stack_.push_back(&global_namespace_);
}
void AddFunctionDeclaration(const std::string& name,
FunctionDeclarationInfo&& function_declaration_info) {
FunctionInfo* function_info = &namespace_stack.back()->functions[name];
FunctionInfo* function_info = &namespace_stack_.back()->functions[name];
function_info->declaration = std::move(function_declaration_info);
}
void AddFunctionDefinition(const std::string& name,
FunctionDefinitionInfo&& function_definition_info) {
FunctionInfo* function_info = &namespace_stack.back()->functions[name];
FunctionInfo* function_info = &namespace_stack_.back()->functions[name];
function_info->definition = std::move(function_definition_info);
}
void AddType(const std::string& type,
TypeInfo&& type_info) {
namespace_stack.back()->types[type] = std::move(type_info);
namespace_stack_.back()->types[type] = std::move(type_info);
}
void AddTypeclass(const std::string& typeclass,
TypeclassInfo&& typeclass_info) {
namespace_stack.back()->typeclasses[typeclass] = std::move(typeclass_info);
namespace_stack_.back()->typeclasses[typeclass] = std::move(typeclass_info);
}
// FindFunction
// FindType
void FindFunction(const std::vector<std::string>& path) {
// TODO
}
// FindVar ??
void FindType(const std::vector<std::string>& path) {
// TODO
}
private:
std::vector<NamespaceInfo*> namespace_stack;
std::vector<NamespaceInfo*> namespace_stack_;
NamespaceInfo global_namespace_;
std::vector<ImportInfo> imports_;

View file

@ -0,0 +1,115 @@
#pragma once
// for clangd
#include "visitor.hpp"
#include "global_info.hpp"
namespace interpreter {
class TypeCheckVisitor : public Visitor {
public:
explicit TypeCheckVisitor(info::GlobalInfo& global_info) : global_info_(global_info) {}
private:
// Sources -----------------
void Visit(SourceFile* node) override;
void Visit(Sources* node) override;
// Namespaces, partitions -----------------
void Visit(Partition* node) override;
void Visit(Namespace* node) override;
// Definitions -----------------
void Visit(ImportStatement* node) override;
void Visit(AliasDefinitionStatement* node) override;
void Visit(VariableDefinitionStatement* node) override;
void Visit(FunctionDeclaration* node) override;
void Visit(FunctionDefinitionStatement* node) override;
void Visit(TypeDefinitionStatement* node) override;
void Visit(AbstractTypeDefinitionStatement* node) override;
void Visit(TypeclassDefinitionStatement* node) override;
// Definition parts
void Visit(FunctionDefinition* node) override;
void Visit(TypeDefinition* node) override;
void Visit(AnyAnnotatedType* node) override;
// Flow control -----------------
void Visit(MatchCase* node) override;
void Visit(Match* node) override;
void Visit(Condition* node) override;
void Visit(DoWhileLoop* node) override;
void Visit(WhileLoop* node) override;
void Visit(ForLoop* node) override;
void Visit(LoopLoop* node) override;
// Statements, expressions, blocks, etc. -----------------
void Visit(Block* node) override;
void Visit(ScopedStatement* node) override;
// Operators
void Visit(BinaryOperatorExpression* node) override;
void Visit(UnaryOperatorExpression* node) override;
void Visit(ReferenceExpression* node) override;
// Simple Expressions
void Visit(FunctionCallExpression* node) override;
void Visit(TupleExpression* node) override;
void Visit(VariantExpression* node) override;
void Visit(ReturnExpression* node) override;
void Visit(TypeConstructor* node) override;
void Visit(LambdaFunction* node) override;
void Visit(ArrayExpression* node) override;
void Visit(LoopControlExpression& node) override; // enum
// Name
void Visit(NameExpression* node) override;
void Visit(TupleName* node) override;
void Visit(VariantName* node) override;
void Visit(AnnotatedName* node) override;
// Type, typeclass, etc. -----------------
// Type
void Visit(FunctionType* node) override;
void Visit(TupleType* node) override;
void Visit(VariantType* node) override;
void Visit(ParametrizedType* node) override;
void Visit(TypeExpression* node) override;
void Visit(ExtendedScopedAnyType* node) override;
// Typeclass
void Visit(ParametrizedTypeclass* node) override;
void Visit(TypeclassExpression* node) override;
// Identifiers, constants, etc. -----------------
void Visit(ExtendedName* node) override;
void Visit(std::string* node) override; // std::string
void Visit(FloatNumberLiteral* node) override;
void Visit(NumberLiteral* node) override;
void Visit(StringLiteral* node) override;
void Visit(CharLiteral* node) override;
private:
info::GlobalInfo& global_info_;
};
} // namespace interpreter

239
include/type_graph.hpp Normal file
View file

@ -0,0 +1,239 @@
#include <vector>
#include <unordered_set>
#include <unordered_map>
#include <optional>
#include <string>
// TODO: optimize recalc
class TypeGraph {
public:
size_t AddVertex(const std::vector<std::string>& path,
const std::vector<std::string>& methods = {},
const std::vector<std::string>& typeclasses = {}) {
is_calculated_ = false;
Vertex vertex;
vertex.path = path;
for (auto& method : methods) {
vertex.new_requirements.methods.insert(GetHash(method));
}
for (auto& typeclass : typeclasses) {
vertex.new_requirements.typeclasses.insert(GetHash(typeclass));
}
verticles_.push_back(vertex);
edges_.emplace_back();
back_edges_.emplace_back();
verticle_ids_[vertex.path] = verticles_.size() - 1;
return verticles_.size() - 1;
}
size_t FindVertex(const std::vector<std::string>& path) {
return verticle_ids_[path];
}
std::vector<std::string> VertexMethods(size_t id) {
if (!is_calculated_) {
// error
return {};
}
size_t cluster_id = verticles_[id].cluster.value();
std::vector<std::string> methods;
methods.reserve(cluster_requirements_[cluster_id].methods.size());
for (auto& method : cluster_requirements_[cluster_id].methods) {
methods.push_back(std::move(GetString(method)));
}
return methods;
}
std::vector<std::string> VertexTypeclasses(size_t id) {
if (!is_calculated_) {
// error
return {};
}
size_t cluster_id = verticles_[id].cluster.value();
std::vector<std::string> typeclasses;
typeclasses.reserve(cluster_requirements_[cluster_id].typeclasses.size());
for (auto& typeclass : cluster_requirements_[cluster_id].typeclasses) {
typeclasses.push_back(std::move(GetString(typeclass)));
}
return typeclasses;
}
void AddTypeclass(size_t id, const std::string& method) {
is_calculated_ = false;
verticles_[id].new_requirements.methods.insert(GetHash(method));
}
void AddMethod(size_t id, const std::string& typeclass) {
is_calculated_ = false;
verticles_[id].new_requirements.typeclasses.insert(GetHash(typeclass));
}
void AddEdge(size_t from, size_t to) {
is_calculated_ = false;
edges_[from].push_back(to);
back_edges_[to].push_back(from);
}
void Calculate() {
if (is_calculated_) {
return;
}
auto clusters = FindClusters();
std::vector<RequirementsData> cluster_requirements(clusters.size());
std::vector<std::unordered_set<size_t>> cluster_edges(clusters.size());
for (size_t i = 0; i < clusters.size(); ++i) {
for (auto& vertex_id : clusters[i]) {
for (auto& method : verticles_[vertex_id].new_requirements.methods) {
cluster_requirements[i].methods.insert(method);
}
verticles_[vertex_id].new_requirements.methods.clear();
for (auto& typeclass : verticles_[vertex_id].new_requirements.typeclasses) {
cluster_requirements[i].typeclasses.insert(typeclass);
}
verticles_[vertex_id].new_requirements.methods.clear();
for (auto& edge : edges_[vertex_id]) {
cluster_edges[i].insert(edge);
}
}
}
// TODO: check, that clusters are top sorted
for (size_t i = 0; i < clusters.size(); ++i) {
for (auto& edge : cluster_edges[i]) {
for (auto& method : cluster_requirements[edge].methods) {
cluster_requirements[i].methods.insert(method);
}
for (auto& typeclass : cluster_requirements[edge].typeclasses) {
cluster_requirements[i].typeclasses.insert(typeclass);
}
}
}
for (size_t i = 0; i < clusters.size(); ++i) {
for (auto& vertex_id : clusters[i]) {
verticles_[vertex_id].cluster = i;
}
}
clusters_ = std::move(clusters);
cluster_requirements_ = std::move(cluster_requirements);
is_calculated_ = true;
}
private:
struct RequirementsData {
std::unordered_set<size_t> methods;
std::unordered_set<size_t> typeclasses;
};
struct Vertex {
std::vector<std::string> path;
RequirementsData new_requirements;
std::optional<size_t> cluster;
};
std::vector<std::vector<size_t>> FindClusters() {
std::vector<std::vector<size_t>> clusters;
auto sorted_verticles = TopSort();
std::vector<size_t> marks(sorted_verticles.size(), 0);
for (size_t i = 0; i < sorted_verticles.size(); ++i) {
if (marks[i] == 0) {
clusters.emplace_back();
VisitDfs(i, clusters[i], marks, back_edges_, clusters.size());
}
}
return clusters;
}
void VisitDfs(size_t id,
std::vector<size_t>& verticles,
std::vector<size_t>& marks,
const std::vector<std::vector<size_t>>& edges,
size_t mark) {
if (marks[id] != 0) {
return;
}
marks[id] = mark;
verticles.push_back(id);
for (size_t i = 0; i < edges[id].size(); ++i) {
VisitDfs(id, verticles, marks, edges, mark);
}
}
std::vector<size_t> TopSort() {
std::vector<size_t> sorted_verticles;
std::vector<size_t> marks(verticles_.size(), 0);
for (size_t i = 0; i < marks.size(); ++i) {
VisitDfs(i, sorted_verticles, marks, edges_, 1);
}
return sorted_verticles;
}
size_t GetHash(const std::string& str) {
size_t hash = 0;
auto str_position = string_to_hash_.find(str);
if (str_position == string_to_hash_.end()) {
hash = hash_to_string_.size();
string_to_hash_[str] = hash;
hash_to_string_.push_back(str);
} else {
hash = str_position->second;
}
return hash;
}
std::string GetString(size_t hash) {
return hash_to_string_[hash];
}
private:
std::unordered_map<std::vector<std::string>, size_t> verticle_ids_;
std::vector<std::vector<size_t>> edges_;
std::vector<std::vector<size_t>> back_edges_;
std::vector<Vertex> verticles_;
std::vector<std::vector<size_t>> clusters_;
std::vector<RequirementsData> cluster_requirements_;
std::vector<std::string> hash_to_string_;
std::unordered_map<std::string, size_t> string_to_hash_;
bool is_calculated_ = false;
};