typecheck (without modes), unique mode

This commit is contained in:
programsnail 2024-04-21 14:09:38 +03:00
parent 7055b353a9
commit 9448e2ac19
12 changed files with 602 additions and 279 deletions

View file

@ -17,5 +17,6 @@ include_directories(
add_executable(lang src/main.cpp
src/parsing_tree.cpp
src/types.cpp
src/type_check.cpp
src/mode_check.cpp)

View file

@ -3,6 +3,7 @@
## Info
https://blog.janestreet.com/oxidizing-ocaml-locality/
https://blog.janestreet.com/oxidizing-ocaml-ownership/
- **locality:** *global* (default) or *local* (value should not be passed out of context, can be allocated on stach)
@ -23,3 +24,13 @@ https://blog.janestreet.com/oxidizing-ocaml-ownership/
## Examples
- *unique:* let f (unique x) = x * x in f;; -> error
---
**bad design decisions:**
- shared_ptr instead of unique_ptr
- using namespace std
- use of indicies instead of visitor for std::variant
going to fix later (?)

View file

@ -1,2 +1,79 @@
#pragma once
#include "parsing_tree.hpp"
#include <map>
#include <source_location>
namespace mode_check {
using namespace types;
struct VarState {
VarState(Mode mode, size_t count = 0) : mode(mode), count(count) {}
Mode mode;
size_t count = 0;
};
struct State {
friend struct Context;
State() { vars_stack.emplace_back(); }
std::optional<VarState *> get_var_state(const std::string &name,
bool last_context_only = false) {
for (auto vars_it = vars_stack.rbegin(); vars_it != vars_stack.rend();
++vars_it) {
auto var_it = vars_it->find(name);
if (var_it == vars_it->end()) {
if (last_context_only) {
break;
}
continue;
}
return &var_it->second;
}
utils::throw_error("NO_VAR");
return std::nullopt;
}
void add_var(std::string name, Mode mode = Mode()) {
vars_stack.back().insert({std::move(name), VarState{mode}});
// TODO: check existance
}
private:
void enter_context() { vars_stack.emplace_back(); }
void exit_context() { vars_stack.pop_back(); }
private:
vector<map<string, VarState>> vars_stack;
};
struct Context {
Context(State &state) : state_(state) { state_.enter_context(); }
~Context() { state_.exit_context(); }
private:
State &state_;
};
// struct ExclVarScope {
// ExclVarScope(std::string name, State &state)
// : name_(std::move(name)), state_(state) {}
// ~ExclVarScope() {}
// private:
// std::string name_;
// State &state_;
// };
void check_expr(nodes::ExprPtr expr, State &state);
} // mode_check

View file

@ -6,81 +6,68 @@
#include <variant>
#include <vector>
namespace types {
using namespace std;
struct Type;
using TypePtr = shared_ptr<Type>;
struct ArrowType {
vector<TypePtr> types;
};
struct BoolType {};
struct IntType {};
// struct UnitType {};
struct AnyType {};
struct Type {
static constexpr size_t ARROW_TYPE_INDEX = 0;
variant<ArrowType, BoolType, IntType, AnyType> type;
enum class Loc { GLOBAL, LOCAL } loc = Loc::GLOBAL;
enum class Uniq { SHARED, UNIQUE, EXCL } uniq = Uniq::SHARED;
enum class Lin { MANY, ONCE, SEP } lin = Lin::MANY;
};
template<typename T, typename... Args>
Type make_type(Args&&... args) {
return Type{T{std::forward<Args>(args)...}};
}
} // namespace types
#include "utils.hpp"
#include "types.hpp"
namespace nodes {
using namespace std;
struct Node {
optional<types::Type> type = std::nullopt;
struct NodeInfo {
optional<types::TypeID> type = std::nullopt;
optional<types::Mode> mode = std::nullopt;
};
struct Expr;
using ExprPtr = shared_ptr<Expr>;
using ExprPtrV = std::vector<ExprPtr>;
struct Arg : public Node {
struct Arg : public NodeInfo {
Arg(string name) : name(std::move(name)) {}
string name;
};
struct Const : public Node {
struct Const : public NodeInfo {
Const(int value) : value(value) {}
int value;
};
struct Var : public Node {
struct Var : public NodeInfo {
Var(string name) : name(std::move(name)) {}
string name;
};
struct Let : public Node {
struct Let : public NodeInfo {
Let(Arg name, ExprPtr body, ExprPtr where)
: name(std::move(name)), body(body), where(where) {}
Arg name;
ExprPtr body;
ExprPtr where;
};
struct Lambda : public Node {
struct Lambda : public NodeInfo {
Lambda(vector<Arg> args, ExprPtr expr) : args(std::move(args)), expr(expr) {}
vector<Arg> args;
ExprPtr expr;
};
struct Call : public Node {
struct Call : public NodeInfo {
Call(ExprPtr func, vector<ExprPtr> args)
: func(func), args(std::move(args)) {}
ExprPtr func;
vector<ExprPtr> args;
};
struct Condition : public Node {
struct Condition : public NodeInfo {
Condition(ExprPtr condition, ExprPtr then_case, ExprPtr else_case)
: condition(condition), then_case(then_case), else_case(else_case) {}
ExprPtr condition;
ExprPtr then_case;
ExprPtr else_case;
@ -96,17 +83,39 @@ struct Expr {
variant<Const, Var, Let, Lambda, Call, Condition> value;
};
template<typename T, typename... Args>
ExprPtr make_expr(Args&&... args) {
return std::make_shared<Expr>(T{std::forward<Args>(args)...});
template <typename T, typename... Args> ExprPtr make_expr(Args &&...args) {
return std::make_shared<Expr>(T(std::forward<Args>(args)...));
}
static ExprPtr lambda1(string name, ExprPtr expr) {
return make_expr<Lambda>(vector<Arg>{{name}}, std::move(expr));
template <typename T> inline T with_type(T node, types::Type type) {
node.type = std::move(type);
return node;
}
ExprPtr operator_call(string name, ExprPtr left, ExprPtr right) {
return make_expr<Call>(make_expr<Var>(name), ExprPtrV{left, right});
template <typename T> inline T with_mode(T node, types::Mode mode) {
node.mode = std::move(mode);
return node;
}
template <typename T> inline T with_unique(T node) {
return with_mode(node, types::Mode(types::Mode::Uniq::UNIQUE));
}
inline ExprPtr make_var(std::string name, types::Mode mode = types::Mode()) {
return make_expr<Var>(with_mode(Var(std::move(name)), mode));
}
inline ExprPtr lambda1(string var, ExprPtr expr) {
return make_expr<Lambda>(vector<Arg>{Arg(var)}, std::move(expr));
}
inline ExprPtr lambda1(Arg var, ExprPtr expr) {
return make_expr<Lambda>(vector<Arg>{var}, std::move(expr));
}
inline ExprPtr operator_call(string name, ExprPtr left, ExprPtr right,
types::Mode mode = types::Mode()) {
return make_expr<Call>(make_var(name, mode), ExprPtrV{left, right});
}
// TODO: all constructors

View file

@ -0,0 +1,74 @@
#pragma once
#include "parsing_tree.hpp"
#include <map>
#include <source_location>
namespace type_check {
using namespace types;
struct VarManager {
friend struct Context;
VarManager() { vars_stack.emplace_back(); }
optional<TypeID> get_var_type(const std::string &name,
bool last_context_only = false) {
for (auto vars_it = vars_stack.rbegin(); vars_it != vars_stack.rend();
++vars_it) {
auto var_it = vars_it->find(name);
if (var_it == vars_it->end()) {
if (last_context_only) {
break;
}
continue;
}
return var_it->second;
}
utils::throw_error("NO_VAR");
return std::nullopt;
}
void add_var(std::string name, TypeID type) {
vars_stack.back().insert({std::move(name), type});
// TODO: check existance
}
private:
void enter_context() { vars_stack.emplace_back(); }
void exit_context() { vars_stack.pop_back(); }
private:
vector<map<string, TypeID>> vars_stack;
};
struct Context {
Context(VarManager &manager) : manager_(manager) { manager_.enter_context(); }
~Context() { manager_.exit_context(); }
private:
VarManager &manager_;
};
// ---------------
struct State {
types::Storage type_storage;
VarManager manager;
};
// struct GenericVarContext {
// GenericVarContext() { /*introduce generic*/ }
// ~GenericVarContext() { /*resolve generic (two ways: as let, or as func
// arg)*/ }
// };
types::TypeID check_expr(nodes::ExprPtr expr, State &state);
} // namespace type_check

165
include/types.hpp Normal file
View file

@ -0,0 +1,165 @@
#pragma once
#include <memory>
#include <vector>
#include <variant>
namespace types {
using namespace std;
struct Mode {
enum class Loc { GLOBAL, LOCAL } loc = Loc::GLOBAL;
enum class Uniq { SHARED, UNIQUE, EXCL } uniq = Uniq::SHARED;
enum class Lin { MANY, ONCE, SEP } lin = Lin::MANY;
Mode with(Loc mode) const {
Mode copy = *this;
copy.loc = mode;
return copy;
}
Mode with(Uniq mode) const {
Mode copy = *this;
copy.uniq = mode;
return copy;
}
Mode with(Lin mode) const {
Mode copy = *this;
copy.lin = mode;
return copy;
}
Mode() = default;
Mode(Loc mode) : loc(mode) {}
Mode(Uniq mode) : uniq(mode) {}
Mode(Lin mode) : lin(mode) {}
};
using ModePtr = shared_ptr<Mode>;
struct Storage;
struct Type;
struct TypeID {
TypeID(size_t id, Storage *storage) : id(id), storage(storage) {}
const Type &get() const;
Type &get();
private:
size_t id;
Storage *storage = nullptr;
};
using TypeIDV = vector<TypeID>;
struct ArrowType {
vector<TypeID> types;
};
struct BoolType {};
struct IntType {};
// struct UnitType {};
struct GenericType {
size_t id;
};
struct Type {
variant<ArrowType, BoolType, IntType, GenericType> type;
};
template <typename T, typename... Args> Type make_type(Args &&...args) {
return Type{T{std::forward<Args>(args)...}};
}
template <typename T, typename... Args> Type make_func1(TypeID in, TypeID ret) {
return make_type<ArrowType>(TypeIDV{in, ret});
}
inline Type make_operator(TypeID left, TypeID right, TypeID ret) {
return make_type<ArrowType>(TypeIDV{left, right, ret});
}
struct Storage {
Storage()
: int_type(add(make_type<IntType>())),
bool_type(add(make_type<BoolType>())) {}
TypeID get_int_type() { return int_type; }
TypeID get_bool_type() { return bool_type; }
Type &get_type(size_t id) { return types[id]; }
const Type &get_type(size_t id) const { return types[id]; }
TypeID introduce_new_generic() {
return add(make_type<GenericType>(first_unused_generic_id++));
}
TypeID add(Type type) {
types.push_back(std::move(type));
return TypeID(types.size() - 1, this);
}
// TODO: add modes ??
bool unify(TypeID left_id, TypeID right_id) {
Type &left = left_id.get();
Type &right = right_id.get();
if (const auto *left_generic = get_if<GenericType>(&left.type);
left_generic != nullptr) {
// TODO: check if other type contins generic
resolve(*left_generic, right);
return true;
}
if (const auto *right_generic = get_if<GenericType>(&right.type);
right_generic != nullptr) {
// TODO: check if other type contins generic
resolve(*right_generic, left);
return true;
}
if (left.type.index() != right.type.index()) {
return false;
}
if (holds_alternative<ArrowType>(left.type)) {
const auto &left_types = std::get<ArrowType>(left.type).types;
const auto &right_types = std::get<ArrowType>(right.type).types;
if (left_types.size() != right_types.size()) {
return false;
}
bool all_unify_passed = true;
for (size_t i = 0; i < left_types.size(); ++i) {
if (not unify(left_types[i], right_types[i])) {
all_unify_passed = false;
}
}
return all_unify_passed;
}
return true;
}
void resolve(GenericType generic, const Type &replacement) {
for (auto &type : types) {
if (const auto *generic_type = get_if<GenericType>(&type.type);
generic_type != nullptr and generic_type->id == generic.id) {
type = replacement;
}
}
}
private:
size_t first_unused_generic_id = 0;
vector<Type> types;
TypeID int_type;
TypeID bool_type;
};
} // namespace types

39
include/utils.hpp Normal file
View file

@ -0,0 +1,39 @@
#pragma once
#include <source_location>
#include <string>
namespace utils {
using namespace std;
// C++ 23
[[noreturn]] inline void unreachable() {
// Uses compiler specific extensions if possible.
// Even if no extension is used, undefined behavior is still raised by
// an empty function body and the noreturn attribute.
#if defined(_MSC_VER) && !defined(__clang__) // MSVC
__assume(false);
#else // GCC, Clang
__builtin_unreachable();
#endif
}
// -----------------
// visitor helper
template <typename... Ts> struct overloaded : Ts... {
using Ts::operator()...;
};
struct Error {
string message;
source_location location;
};
inline void throw_error(string message,
source_location location = source_location::current()) {
throw Error{std::move(message), location};
}
} // namespace utils

View file

@ -1,6 +1,58 @@
#include "mode_check.hpp"
#include "parsing_tree.hpp"
#include "typechecker.hpp"
#include "type_check.hpp"
#include <iostream>
auto make_program() {
using namespace nodes;
return make_expr<Let>(Arg("f"),
lambda1(with_unique(Arg("x")),
operator_call("+", make_var("x", types::Mode::Uniq::UNIQUE),
make_var("x", types::Mode::Uniq::UNIQUE))),
make_var("f"));
}
void add_builtin_functions_types(type_check::State &state) {
auto sum_type = state.type_storage.add(types::make_operator(
state.type_storage.get_int_type(), state.type_storage.get_int_type(),
state.type_storage.get_int_type()));
state.manager.add_var("+", sum_type);
}
void add_builtin_functions_modes(mode_check::State &state) {
state.add_var("+");
}
void print_error(const std::string &general_message,
const utils::Error &error) {
std::cerr << general_message << " "
<< "file: " << error.location.file_name() << "("
<< error.location.line() << ":" << error.location.column() << ") `"
<< error.location.function_name() << "`: " << error.message;
}
int main() {
return 0;
const auto program = make_program();
try {
type_check::State state;
add_builtin_functions_types(state);
type_check::check_expr(program, state);
} catch (utils::Error error) {
print_error("TYPE CHECK ERROR:", error);
}
try {
mode_check::State state;
add_builtin_functions_modes(state);
mode_check::check_expr(program, state);
} catch (utils::Error error) {
print_error("MODE CHECK ERROR:", error);
}
}

View file

@ -1,140 +1,24 @@
#include "mode_check.hpp"
#include "parsing_tree.hpp"
#include <map>
#include <source_location>
namespace mode_check {
// C++ 23
[[noreturn]] inline void unreachable() {
// Uses compiler specific extensions if possible.
// Even if no extension is used, undefined behavior is still raised by
// an empty function body and the noreturn attribute.
#if defined(_MSC_VER) && !defined(__clang__) // MSVC
__assume(false);
#else // GCC, Clang
__builtin_unreachable();
#endif
}
using namespace types;
struct VarState {
Type type;
size_t count = 0;
};
struct ModeError {
enum Error {
UNKNOWN,
NO_VAR,
NO_VAR_TYPE,
NO_TYPE,
WRONG_TYPE,
LOCAL,
UNIQUE,
EXCL,
ONCE,
SEP
} error = UNKNOWN;
source_location location;
ModeError(Error error, source_location location)
: type(type), location(location) {}
};
struct State {
friend struct Context;
State() { vars_stack.emplace_back(); }
void set_error(ModeError::Error error,
source_location location = source_location::current()) {
if (first_error.has_value()) {
return;
}
first_error = ModeError(std::move(error), location);
}
std::optional<VarState *> get_var_state(const std::string &name,
bool last_context_only = false) {
for (auto vars_it = vars_stack.rbegin(); vars_it != vars_stack.rend();
++vars_it) {
auto var_it = vars_it->find(name);
if (var_it == vars_it->end()) {
if (last_context_only) {
break;
}
continue;
}
return &var_it->second;
}
set_error(ModeError::NO_VAR);
return std::nullopt;
}
void add_var(std::string name, Type type) {
vars_stack.back().insert({std::move(name), VarState{std::move(type)}});
// TODO: check existance
}
std::optional<ModeError> get_first_error() { return first_error; }
private:
void enter_context() { vars_stack.emplace_back(); }
void exit_context() { vars_stack.pop_back(); }
private:
vector<map<string, VarState>> vars_stack;
std::optional<ModeError> first_error;
};
struct Context {
Context(State &state) : state_(state) { state_.enter_context(); }
~Context() { state_.exit_context(); }
private:
State &state_;
};
// struct ExclVarScope {
// ExclVarScope(std::string name, State &state)
// : name_(std::move(name)), state_(state) {}
// ~ExclVarScope() {}
// private:
// std::string name_;
// State &state_;
// };
void check_expr(nodes::ExprPtr expr, State &state);
void check_const(const nodes::Const &, State &) {}
void check_var(const nodes::Var &expr, State &state) {
if (not expr.type.has_value()) {
state.set_error(ModeError::NO_TYPE);
if (not expr.mode.has_value()) {
utils::throw_error("NO_MODE for " + expr.name);
return;
}
auto type = expr.type.value();
auto mode = expr.mode.value();
if (auto maybe_var_state = state.get_var_state(expr.name);
maybe_var_state.has_value()) {
auto &var_state = *maybe_var_state.value();
if (var_state.type.uniq == Type::Uniq::UNIQUE) {
if (var_state.mode.uniq == Mode::Uniq::UNIQUE) {
++var_state.count;
if (var_state.count > 1 || type.uniq != Type::Uniq::UNIQUE) {
state.set_error(ModeError::UNIQUE);
if (var_state.count > 1 || mode.uniq != Mode::Uniq::UNIQUE) {
utils::throw_error("UNIQUE for " + expr.name);
return;
}
}
@ -151,10 +35,10 @@ void check_let(const nodes::Let &expr, State &state) {
{
Context context(state);
if (not expr.name.type.has_value()) {
state.set_error(ModeError::NO_VAR_TYPE);
if (not expr.name.mode.has_value()) {
utils::throw_error("NO_VAR_MODE");
}
state.add_var(expr.name.name, expr.name.type.value());
state.add_var(expr.name.name, expr.name.mode.value());
check_expr(expr.where, state);
}
@ -164,11 +48,11 @@ void check_lambda(const nodes::Lambda &expr, State &state) {
Context context(state);
for (const auto &arg : expr.args) {
if (not arg.type.has_value()) {
state.set_error(ModeError::NO_VAR_TYPE);
if (not arg.mode.has_value()) {
utils::throw_error("NO_VAR_MODE");
continue;
}
state.add_var(arg.name, arg.type.value());
state.add_var(arg.name, arg.mode.value());
}
check_expr(expr.expr, state);
@ -176,20 +60,20 @@ void check_lambda(const nodes::Lambda &expr, State &state) {
void check_call(const nodes::Call &expr, State &state) {
// if (not expr.type.has_value()) {
// state.set_error(ModeError::NO_TYPE);
// utils::throw_error("NO_TYPE");
// return;
// }
// auto type = expr.type.value();
// if (not holds_alternative<types::ArrowType>(type.type)) {
// state.set_error(ModeError::WRONG_TYPE);
// utils::throw_error("WRONG_TYPE");
// return;
// }
// const auto &arrow_type = get<types::ArrowType>(type.type);
// if (arrow_type.types.size() != expr.args.size() + 1) {
// state.set_error(ModeError::WRONG_TYPE);
// utils::throw_error("WRONG_TYPE");
// return;
// }
@ -229,7 +113,7 @@ void check_expr(nodes::ExprPtr expr, State &state) {
check_condition(std::get<5>(expr->value), state);
break;
default:
unreachable();
utils::unreachable();
}
}

View file

@ -1,112 +1,107 @@
#include "type_check.hpp"
#include "parsing_tree.hpp"
// TODO
namespace type_check {
using namespace types;
// C++ 23
[[noreturn]] inline void unreachable() {
// Uses compiler specific extensions if possible.
// Even if no extension is used, undefined behavior is still raised by
// an empty function body and the noreturn attribute.
#if defined(_MSC_VER) && !defined(__clang__) // MSVC
__assume(false);
#else // GCC, Clang
__builtin_unreachable();
#endif
types::TypeID check_const(nodes::Const &expr, State &state) {
return (expr.type = state.type_storage.get_int_type()).value();
}
// bool eq(Type x, Type y) {
// if (x.type.index() != y.type.index()) {
// return false;
// }
// if (x.type.index() != Type::ARROW_TYPE_INDEX) {
// return true;
// }
// const auto &x_types = std::get<Type::ARROW_TYPE_INDEX>(x.type);
// const auto &y_types = std::get<Type::ARROW_TYPE_INDEX>(y.type);
// if (x_types.size() != )
// }
// -----------------
template <typename T>
using Typechecked = std::pair<T /*expr*/, types::Type /*type*/>;
Typechecked<nodes::ExprPtr> typecheck_expr(nodes::ExprPtr expr);
Typechecked<nodes::Const> typecheck_const(nodes::Const expr) {
// TODO
return {std::move(expr), make_type<AnyType>()};
types::TypeID check_var(nodes::Var &expr, State &state) {
if (auto maybe_var_type = state.manager.get_var_type(expr.name);
maybe_var_type.has_value()) {
return (expr.type = maybe_var_type).value();
}
utils::unreachable();
}
Typechecked<nodes::Var> typecheck_var(nodes::Var expr) {
// TODO
return {std::move(expr), make_type<AnyType>()};
types::TypeID check_let(nodes::Let &expr, State &state) {
Context context(state.manager);
types::TypeID new_type = state.type_storage.introduce_new_generic();
state.manager.add_var(expr.name.name, new_type);
types::TypeID body_type = check_expr(expr.body, state);
if (not state.type_storage.unify(new_type, body_type)) {
utils::throw_error("DIFFERENT_TYPES");
}
Typechecked<nodes::Let> typecheck_let(nodes::Let expr) {
// TODO
return {std::move(expr), make_type<AnyType>()};
types::TypeID where_type = check_expr(expr.where, state);
return (expr.type = where_type).value();
}
Typechecked<nodes::Lambda> typecheck_lambda(nodes::Lambda expr) {
// TODO
return {std::move(expr), make_type<AnyType>()};
types::TypeID check_lambda(nodes::Lambda &expr, State &state) {
Context context(state.manager);
for (const auto &arg : expr.args) {
types::TypeID new_type = state.type_storage.introduce_new_generic();
state.manager.add_var(arg.name, new_type);
}
Typechecked<nodes::Call> typecheck_call(nodes::Call expr) {
// TODO
return {std::move(expr), make_type<AnyType>()};
types::TypeID lambda_type = check_expr(expr.expr, state);
return (expr.type = lambda_type).value();
}
Typechecked<nodes::Condition> typecheck_condition(nodes::Condition expr) {
// const auto [condition_expr, condition_type] = typecheck_expr(expr.condition);
// expr.condition = std::move(condition_expr);
types::TypeID check_call(nodes::Call &expr, State &state) {
types::TypeID func_type = check_expr(expr.func, state);
// const auto [then_case_expr, then_case_type] = typecheck_expr(expr.then_case);
// expr.then_case = std::move(then_case_expr);
if (auto *arrow_func_type = get_if<types::ArrowType>(&func_type.get().type);
arrow_func_type != nullptr) {
// const auto [else_case_expr, else_type_type] = typecheck_expr(expr.else_case);
// expr.else_case = std::move(else_case_expr);
return {std::move(expr), make_type<AnyType>()};
if (arrow_func_type->types.size() != expr.args.size() + 1) {
utils::throw_error("ARG_COUNT_MISMATCH");
}
Typechecked<nodes::ExprPtr> typecheck_expr(nodes::ExprPtr expr) {
types::Type type;
for (size_t i = 0; i < expr.args.size(); ++i) {
types::TypeID arg_type = check_expr(expr.args[i], state);
if (not state.type_storage.unify(arrow_func_type->types[i], arg_type)) {
utils::throw_error("DIFFERENT_TYPES");
}
}
return (expr.type = arrow_func_type->types.back()).value();
}
utils::throw_error("FUNC_IS_NOT_ARROW_TYPE");
utils::unreachable();
}
types::TypeID check_condition(nodes::Condition &expr, State &state) {
types::TypeID condition_type = check_expr(expr.condition, state);
if (not state.type_storage.unify(condition_type,
state.type_storage.get_bool_type())) {
utils::throw_error("DIFFERENT_TYPES");
}
types::TypeID then_type = check_expr(expr.then_case, state);
types::TypeID else_type = check_expr(expr.else_case, state);
if (not state.type_storage.unify(then_type, else_type)) {
utils::throw_error("DIFFERENT_TYPES");
}
return (expr.type = then_type).value();
}
types::TypeID check_expr(nodes::ExprPtr expr, State &state) {
switch (expr->value.index()) {
case 0: // Const
std::tie(expr->value, type) = typecheck_const(std::get<0>(expr->value));
break;
return check_const(std::get<0>(expr->value), state);
case 1: // Var
std::tie(expr->value, type) = typecheck_var(std::get<1>(expr->value));
break;
return check_var(std::get<1>(expr->value), state);
case 2: // Let
std::tie(expr->value, type) = typecheck_let(std::get<2>(expr->value));
break;
return check_let(std::get<2>(expr->value), state);
case 3: // Lambda
std::tie(expr->value, type) = typecheck_lambda(std::get<3>(expr->value));
break;
return check_lambda(std::get<3>(expr->value), state);
case 4: // Call
std::tie(expr->value, type) = typecheck_call(std::get<4>(expr->value));
break;
return check_call(std::get<4>(expr->value), state);
case 5: // Condition
std::tie(expr->value, type) = typecheck_condition(std::get<5>(expr->value));
break;
return check_condition(std::get<5>(expr->value), state);
default:
unreachable();
utils::unreachable();
}
return {std::move(expr), std::move(type)};
}
} // namespace type_check

13
src/types.cpp Normal file
View file

@ -0,0 +1,13 @@
#include "types.hpp"
namespace types {
const Type& TypeID::get() const {
return storage->get_type(id);
}
Type& TypeID::get() {
return storage->get_type(id);
}
} // namespace types

View file

@ -1,11 +1,14 @@
#include "parsing_tree.hpp"
#include <iostream>
using namespace nodes;
int main() {
const auto program =
Expr{Let{Arg{"f", {}},
Expr(Let(Arg("f"),
lambda1("x", operator_call("+", make_expr<Var>("x"),
make_expr<Var>("x"))),
make_expr<Var>("f")}};
make_expr<Var>("f")));
}