prog_synthesis/02.hs

192 lines
10 KiB
Haskell

import Data.List (elemIndex, sort, find)
import Data.Maybe (isJust)
infixl 4 :+:
data Expr = Zero
| Succ Expr
| Len Expr
| FirstZero Expr
| Sort Expr
| SubList Expr Expr Expr
| Expr :+: Expr
| Recursive Expr
| ZeroList
| InList
deriving (Read, Show, Eq)
data Type = IntT | ListT
deriving (Read, Show, Eq)
data Value = IntV Int | ListV [Int]
deriving (Read, Show, Eq)
typeOf :: Expr -> Type
typeOf Zero = IntT
typeOf (Succ {}) = IntT
typeOf (Len {}) = IntT
typeOf (FirstZero {}) = IntT
typeOf _ = ListT
data Env = Env {input :: [Int], prog :: Expr, steps :: Int}
stepInEnv :: Env -> Env
stepInEnv env@(Env {input, prog, steps}) = env { steps = steps - 1 }
execInt :: Env -> Expr -> Maybe Int
execInt (Env {input, prog, steps=0}) _ = Nothing
execInt _ Zero = Just 0
execInt env (Succ expr) = (+) 1 <$> execInt (stepInEnv env) expr
execInt env (Len listExpr) = length <$> execList (stepInEnv env) listExpr
execInt env (FirstZero listExpr) = do value <- execList (stepInEnv env) listExpr
0 `elemIndex` value
execInt _ _ = Nothing
execList :: Env -> Expr -> Maybe [Int]
execList (Env {input, prog, steps=0}) _ = Nothing
execList env (Sort listExpr) = sort <$> execList (stepInEnv env) listExpr
execList env (SubList listExpr exprFrom exprTo) = do valFrom <- execInt (stepInEnv env) exprFrom
valTo <- execInt (stepInEnv env) exprTo
listValue <- execList (stepInEnv env) listExpr
return $ drop valFrom $ take (valTo + 1) listValue
execList env (exprLeft :+: exprRight) = do valLeft <- execList (stepInEnv env) exprLeft
valRight <- execList (stepInEnv env) exprRight
return $ valLeft ++ valRight
execList env (Recursive listExpr) = do listValue <- execList (stepInEnv env) listExpr
if null listValue then Just [] else execList (stepInEnv $ env {input = listValue}) (prog env)
execList _ ZeroList = Just [0]
execList (Env {input, prog, steps}) InList = Just input
execList _ _ = Nothing
-- TODO: union
execProg :: [Int] -> Expr -> Maybe [Int]
execProg input expr = execList (Env {input, prog=expr, steps=20}) expr
terminals :: [Expr]
terminals = [Zero, ZeroList, InList] -- ,
-- Succ Zero, Len InList]
concatShuffle :: [[Expr]] -> [Expr]
concatShuffle xxs = let xxs' = filter (not . null) xxs in
if null xxs' then [] else
map head xxs' ++ concatShuffle (map tail xxs')
nextSimpleExprsLists :: [Expr] -> [[Expr]]
nextSimpleExprsLists exprs = let listExprs = [ e | e <- exprs, typeOf e == ListT] in
[[Succ e | e <- exprs, typeOf e == IntT],
map Sort listExprs,
map Recursive listExprs,
map FirstZero listExprs,
map Len listExprs]
nextExprsLists :: [Expr] -> [[Expr]]
nextExprsLists exprs = let listExprs = [ e | e <- exprs, typeOf e == ListT] in
let intExprs = [ e | e <- exprs, typeOf e == IntT] in
nextSimpleExprsLists exprs ++
[[e :+: e' | e <- listExprs,
e' <- listExprs],
[SubList e from to | e <- listExprs, from <- intExprs, to <- intExprs]]
nextSimpleExprs :: [Expr] -> [Expr]
nextSimpleExprs exprs = (++) exprs $ concatShuffle $ nextSimpleExprsLists exprs
nextExprs :: [Expr] -> [Expr]
nextExprs exprs = (++) exprs $ concatShuffle $ nextExprsLists exprs
nextSimpleExprs' :: [Expr] -> [Expr]
nextSimpleExprs' = concatShuffle . nextSimpleExprsLists
nextExprsLists' :: [Expr] -> [Expr] -> [[Expr]]
nextExprsLists' newExprs oldExprs = let listNewExprs = [ e | e <- newExprs, typeOf e == ListT] in
let intNewExprs = [ e | e <- newExprs, typeOf e == IntT] in
let listOldExprs = [ e | e <- oldExprs, typeOf e == ListT] in
let intOldExprs = [ e | e <- oldExprs, typeOf e == IntT] in
nextSimpleExprsLists newExprs ++
[concat [[e :+: e' | e <- listNewExprs, e' <- listNewExprs],
[e :+: e' | e <- listNewExprs, e' <- listOldExprs],
[e :+: e' | e <- listOldExprs, e' <- listNewExprs]],
concat [[SubList e from to | e <- listNewExprs, from <- intNewExprs, to <- intNewExprs],
[SubList e from to | e <- listOldExprs, from <- intNewExprs, to <- intNewExprs],
[SubList e from to | e <- listNewExprs, from <- intOldExprs, to <- intNewExprs],
[SubList e from to | e <- listNewExprs, from <- intNewExprs, to <- intOldExprs],
[SubList e from to | e <- listOldExprs, from <- intOldExprs, to <- intNewExprs],
[SubList e from to | e <- listOldExprs, from <- intNewExprs, to <- intOldExprs],
[SubList e from to | e <- listNewExprs, from <- intOldExprs, to <- intOldExprs]]]
nextExprs' :: [Expr] -> [Expr] -> [Expr]
nextExprs' newExprs oldExprs = concatShuffle $ nextExprsLists' newExprs oldExprs
data Example = Example {exampleInput :: [Int], exampleOutput :: [Int]}
-- check expr on all examples
isCorrect :: [Example] -> Expr -> Bool
isCorrect examples expr = all (\Example {exampleInput, exampleOutput} -> execProg exampleInput expr == Just exampleOutput) examples
isValid :: [Example] -> Expr -> Bool
isValid examples expr | typeOf expr == IntT = True
| otherwise = all (\Example {exampleInput, exampleOutput} -> isJust $ execProg exampleInput expr) examples
-- check are exprs produce same results on all the examples
areSame :: [Example] -> Expr -> Expr -> Bool
areSame examples exprLeft exprRight | typeOf exprLeft == IntT = False
| typeOf exprRight == IntT = False
| otherwise = all (\Example {exampleInput, exampleOutput} -> let Just resLeft = execProg exampleInput exprLeft in
let Just resRight = execProg exampleInput exprRight in
resLeft /= [] -- NOTE: not in the base algorithm, way to remove rec deletion (?)
&& resLeft == resRight) examples
-----
upSyntesisStep :: [Example] -> [Expr] -> Either [Expr] Expr
upSyntesisStep examples exprs = case find (isCorrect examples) exprs of
Just answer -> Right answer
Nothing -> let exprs' = filter (isValid examples) exprs in -- exclude invalid fragments
let exprs'' = foldl (\acc expr -> if any (areSame examples expr) acc then acc else expr : acc) [] exprs' in -- merge same values
Left $
nextSimpleExprs $
nextExprs exprs''
upSyntesisRec :: [Example] -> Int -> [Expr] -> Maybe Expr
upSyntesisRec _ 0 _ = Nothing
upSyntesisRec examples steps exprs = case upSyntesisStep examples exprs of
Right answer -> Just answer
Left exprs' -> upSyntesisRec examples (steps - 1) exprs'
upSyntesis :: [Example] -> Int -> Maybe Expr
upSyntesis examples steps = upSyntesisRec examples steps $ nextSimpleExprs terminals
-----
data ExprsPair = ExprsPair [Expr] [Expr]
upSyntesisStep' :: [Example] -> [Expr] -> [Expr] -> Either ExprsPair Expr
upSyntesisStep' examples newExprs oldExprs =
case find (isCorrect examples) newExprs of
Just answer -> Right answer
Nothing -> let newExprs' = filter (isValid examples) newExprs in -- exclude invalid fragments
-- NOTE: new exprs are not checked against old exprs for now
let newExprs'' = foldl (\acc expr -> if any (areSame examples expr) acc then acc else expr : acc) [] newExprs' in -- merge same values
Left $
-- nextSimpleExprs $
ExprsPair (nextExprs' newExprs'' oldExprs) newExprs''
upSyntesisRec' :: [Example] -> Int -> [Expr] -> [Expr] -> Maybe Expr
upSyntesisRec' _ 0 _ _ = Nothing
upSyntesisRec' examples steps newExprs oldExprs = case upSyntesisStep' examples newExprs oldExprs of
Right answer -> Just answer
Left (ExprsPair newExprs' oldExprs') -> upSyntesisRec' examples (steps - 1) newExprs' (oldExprs' ++ oldExprs)
upSyntesis' :: [Example] -> Int -> Maybe Expr
upSyntesis' examples steps = upSyntesisRec' examples steps (nextSimpleExprs terminals) []
-----
exampleOf :: [Int] -> [Int] -> Example
exampleOf input output = Example {exampleInput = input, exampleOutput = output}
sameExamplesExpected = InList
sameExamples = [exampleOf [1] [1], exampleOf [1,2] [1,2], exampleOf [1,2,3] [1,2,3], exampleOf [1,2,3,4] [1,2,3,4]]
revExamplesExpected = Recursive (SubList InList (Succ Zero) (Len InList)) :+: SubList InList Zero Zero
revExamples = [exampleOf [1] [1], exampleOf [1,2] [2,1], exampleOf [1,2,3] [3,2,1], exampleOf [1,2,3,4] [4,3,2,1]]
main = print $ upSyntesis' revExamples 4