mirror of
https://codeberg.org/ProgramSnail/prog_synthesis.git
synced 2025-12-06 05:28:42 +00:00
728 lines
34 KiB
Haskell
728 lines
34 KiB
Haskell
-- NOTE: it will be important to remove gets on caching addition
|
|
|
|
import Control.Monad (guard, liftM, when, unless, foldM, foldM_)
|
|
import Control.Applicative
|
|
import Control.Monad.State as State
|
|
import Data.Map (Map)
|
|
import Data.Set (Set)
|
|
import qualified Data.Map as Map
|
|
import qualified Data.Set as Set
|
|
import Data.List (inits)
|
|
import Data.Maybe (fromMaybe, isJust, maybeToList)
|
|
|
|
import Debug.Trace (trace)
|
|
|
|
data Value = BoolV Bool
|
|
| IntV Int
|
|
| ListV [Value]
|
|
| TreeV Tree
|
|
deriving (Read, Show, Eq, Ord)
|
|
|
|
data Tree = TNode { treeLeft :: Tree, treeRoot :: Value, treeRight :: Tree }
|
|
| TLeaf Value
|
|
deriving (Read, Show, Eq, Ord)
|
|
|
|
data Type = BoolT
|
|
| IntT
|
|
| ListT Type
|
|
| TreeT Type
|
|
| AnyT
|
|
deriving (Read, Show, Eq, Ord)
|
|
|
|
data Expr = Expr :&&: Expr -- Bool
|
|
| Expr :||: Expr
|
|
| NotE Expr
|
|
| Expr :=: Expr
|
|
| Leq0 Expr
|
|
| IsEmptyE Expr
|
|
| Expr :+: Expr -- Int
|
|
| Expr :-: Expr
|
|
| IncE Expr
|
|
| DecE Expr
|
|
| ZeroE
|
|
| Div2E Expr
|
|
| TailE Expr -- List
|
|
| HeadE Expr
|
|
| Expr :++: Expr -- cat
|
|
| Expr ::: Expr -- cons
|
|
| EmptyListE
|
|
| IsLeafE Expr -- Tree
|
|
| TreeValE Expr
|
|
| TreeLeftE Expr
|
|
| TreeRightE Expr
|
|
| CreateNodeE { nodeLeft :: Expr, nodeRoot :: Expr, nodeRight :: Expr }
|
|
| CreateLeafE Expr
|
|
| IfE { ifCond :: Expr, ifDoThen :: Expr, ifDoElse :: Expr }-- Control
|
|
| SelfE Expr
|
|
| InputE Expr
|
|
| Hole
|
|
deriving (Read, Show, Eq, Ord)
|
|
|
|
data Conf = Conf {confInput :: [Value],
|
|
confOracle :: Oracle,
|
|
confExamples :: [[Value]]}
|
|
|
|
------------
|
|
|
|
data Result a = Result a
|
|
| NewExamples [([Value], Value)]
|
|
| RecError String
|
|
| FatalError String
|
|
deriving (Read, Show, Eq)
|
|
|
|
instance Applicative Result where
|
|
Result f <*> Result x = Result $ f x
|
|
NewExamples es <*> NewExamples es' = NewExamples $ es ++ es'
|
|
RecError err <*> _ = RecError err
|
|
_ <*> RecError err = RecError err
|
|
FatalError err <*> _ = FatalError err
|
|
_ <*> FatalError err = FatalError err
|
|
NewExamples es <*> _ = NewExamples es
|
|
_ <*> NewExamples es = NewExamples es
|
|
pure = Result
|
|
|
|
-- m1 <*> m2 = m1 >>= (\x1 -> m2 >>= (\x2 -> return (x1 x2)))
|
|
instance Monad Result where
|
|
Result x >>= f = f x
|
|
NewExamples es >>= _ = NewExamples es
|
|
RecError err >>= _ = RecError err
|
|
FatalError err >>= _ = FatalError err
|
|
return = pure
|
|
|
|
instance Alternative Result where
|
|
empty = undefined -- TMP: no guards used -- FatalError "empty" -- TODO: rec ?
|
|
RecError err <|> y = y
|
|
FatalError err <|> y = y
|
|
NewExamples es <|> _ = NewExamples es
|
|
r@(Result x) <|> _ = r
|
|
|
|
instance Functor Result where
|
|
fmap = liftM
|
|
|
|
instance MonadFail Result where
|
|
fail _ = RecError "failure" -- TODO: fatal ?
|
|
|
|
-- instance (Foldable expr) ??
|
|
|
|
-- TODO: check all laws
|
|
|
|
------------
|
|
|
|
typeOf :: Value -> Type
|
|
typeOf (BoolV {}) = BoolT
|
|
typeOf (IntV {}) = IntT
|
|
typeOf (ListV {}) = ListT
|
|
typeOf (TreeV {}) = TreeT
|
|
|
|
isBool = (== BoolT) . typeOf
|
|
isInt = (== IntT) . typeOf
|
|
isList = (== ListT) . typeOf
|
|
isTree = (== TreeT) . typeOf
|
|
|
|
isResult (Result {}) = True
|
|
isResult _ = False
|
|
isNewExamples (NewExamples {}) = True
|
|
isNewExamples _ = False
|
|
isRecError (RecError {}) = True
|
|
isRecError _ = False
|
|
isFatalError (FatalError {}) = True
|
|
isFatalError _ = False
|
|
|
|
treeHeight :: Tree -> Int
|
|
treeHeight (TLeaf {}) = 1
|
|
treeHeight TNode { treeLeft, treeRoot, treeRight } = 1 + (max (treeHeight treeLeft) (treeHeight treeRight) :: Int)
|
|
|
|
-- TODO: check
|
|
structuralLess :: Value -> Value -> Bool
|
|
structuralLess (BoolV left) (BoolV right) = not left && right
|
|
structuralLess (IntV left) (IntV right) = left < right && left > 0 -- ??
|
|
-- TODO: require same elems ?
|
|
structuralLess (ListV left) (ListV right) = length left < length right
|
|
-- TODO: require subtree ?
|
|
structuralLess (TreeV left) (TreeV right) = treeHeight left < treeHeight right
|
|
structuralLess _ _ = False
|
|
|
|
eval :: Conf -> Expr -> Result Value
|
|
eval conf (left :&&: right) = do BoolV leftB <- eval conf left
|
|
BoolV rightB <- eval conf right
|
|
return $ BoolV $ leftB && rightB
|
|
eval conf (left :||: right) = do BoolV leftB <- eval conf left
|
|
BoolV rightB <- eval conf right
|
|
return $ BoolV $ leftB || rightB
|
|
eval conf (NotE e) = do BoolV b <- eval conf e
|
|
return $ BoolV $ not b
|
|
eval conf (left :=: right) = do leftV <- eval conf left
|
|
rightV <- eval conf right
|
|
return $ BoolV $ leftV == rightV
|
|
eval conf (Leq0 e) = do IntV i <- eval conf e
|
|
return $ BoolV $ i <= 0
|
|
eval conf (IsEmptyE e) = do v <- eval conf e
|
|
case v of
|
|
ListV [] -> return $ BoolV True
|
|
ListV _ -> return $ BoolV False
|
|
_ -> FatalError $ "Can't take empty not from list" ++ show v
|
|
eval conf (left :+: right) = do IntV leftI <- eval conf left
|
|
IntV rightI <- eval conf right
|
|
return $ IntV $ leftI + rightI
|
|
eval conf (left :-: right) = do IntV leftI <- eval conf left
|
|
IntV rightI <- eval conf right
|
|
return $ IntV $ leftI - rightI
|
|
eval conf (IncE e) = do IntV i <- eval conf e
|
|
return $ IntV $ i + 1
|
|
eval conf (DecE e) = do IntV i <- eval conf e
|
|
return $ IntV $ i - 1
|
|
eval conf ZeroE = return $ IntV 0
|
|
eval conf (Div2E e) = do IntV i <- eval conf e
|
|
return $ IntV $ i `div` 2
|
|
eval conf (TailE e) = do ListV (_ : t) <- eval conf e
|
|
return $ ListV t
|
|
eval conf (HeadE e) = do ListV (h : _) <- eval conf e
|
|
return h
|
|
eval conf (left :++: right) = do ListV leftL <- eval conf left
|
|
ListV rightL <- eval conf right
|
|
return $ ListV $ leftL ++ rightL
|
|
eval conf (left ::: right) = do leftV <- eval conf left
|
|
ListV rightL <- eval conf right
|
|
return $ ListV $ leftV : rightL
|
|
eval conf EmptyListE = return $ ListV []
|
|
eval conf (IsLeafE e) = do TreeV t <- eval conf e
|
|
return $ BoolV $ case t of
|
|
TNode {} -> False
|
|
TLeaf {} -> True
|
|
eval conf (TreeValE e) = do TreeV t <- eval conf e
|
|
return $ case t of
|
|
n@TNode {} -> treeRoot n
|
|
TLeaf e -> e
|
|
eval conf (TreeLeftE e) = do TreeV n@(TNode {}) <- eval conf e
|
|
return $ TreeV $ treeLeft n
|
|
eval conf (TreeRightE e) = do TreeV n@(TNode {}) <- eval conf e
|
|
return $ TreeV $ treeRight n
|
|
eval conf (CreateNodeE {nodeLeft, nodeRoot, nodeRight}) = do TreeV treeLeft <- eval conf nodeLeft
|
|
treeRoot <- eval conf nodeRoot
|
|
TreeV treeRight <- eval conf nodeRight
|
|
return $ TreeV $ TNode { treeLeft, treeRoot, treeRight }
|
|
eval conf (CreateLeafE e) = do v <- eval conf e
|
|
return $ TreeV $ TLeaf v
|
|
eval conf (IfE {ifCond, ifDoThen, ifDoElse}) = do BoolV condB <- eval conf ifCond
|
|
if condB then eval conf ifDoThen else eval conf ifDoElse
|
|
eval conf (SelfE e) = do ListV recInput <- eval conf e
|
|
-- NOTE: replaced guards for better errors description
|
|
-- guard $ length newInput == length (confInput conf)
|
|
-- guard $ and $ zipWith structuralLess newInput (confInput conf)
|
|
if length recInput /= length (confInput conf)
|
|
then FatalError $ "self call different length, new=" ++ show recInput ++ " old=" ++ show (confInput conf) -- TODO: fatal ?
|
|
else do
|
|
if not $ and $ zipWith structuralLess recInput (confInput conf)
|
|
then RecError $ "self call on >= exprs, new=" ++ show recInput ++ " old=" ++ show (confInput conf)
|
|
else do
|
|
case confOracle conf recInput of
|
|
Just recOutput -> if recInput `elem` confExamples conf
|
|
then return recOutput
|
|
else NewExamples $ trace ("newExample: " ++ show [(recInput, recOutput)]) [(recInput, recOutput)]
|
|
Nothing -> FatalError $ "no oracle output on " ++ show recInput
|
|
eval conf (InputE e) = do IntV i <- eval conf e
|
|
if i < 0 || i >= length (confInput conf) -- NOTE: replaced guard for better errors description
|
|
then FatalError $ "can't access input " ++ show (confInput conf) ++ " by id " ++ show i -- TODO: fatal ?
|
|
else return $ confInput conf !! i -- use !? instead (?)
|
|
eval _ Hole = FatalError "can't eval hole"
|
|
|
|
-- TODO: types on container exstraction (polymorphic types / holes or generic containers?), input & oracle types <- change conf
|
|
checkType :: Conf -> Expr -> Maybe Type
|
|
checkType conf (left :&&: right) = do BoolT <- checkType conf left
|
|
BoolT <- checkType conf right
|
|
return BoolT
|
|
checkType conf (left :||: right) = do BoolT <- checkType conf left
|
|
BoolT <- checkType conf right
|
|
return BoolT
|
|
checkType conf (NotE e) = do BoolT <- checkType conf e
|
|
return BoolT
|
|
checkType conf (left :=: right) = do leftT <- checkType conf left
|
|
rightT <- checkType conf right
|
|
guard $ leftT == rightT
|
|
return BoolT
|
|
checkType conf (Leq0 e) = do IntT <- checkType conf e
|
|
return BoolT
|
|
checkType conf (IsEmptyE e) = do ListT AnyT <- checkType conf e
|
|
return BoolT
|
|
checkType conf (left :+: right) = do IntT <- checkType conf left
|
|
IntT <- checkType conf right
|
|
return IntT
|
|
checkType conf (left :-: right) = do IntT <- checkType conf left
|
|
IntT <- checkType conf right
|
|
return IntT
|
|
checkType conf (IncE e) = do IntT <- checkType conf e
|
|
return IntT
|
|
checkType conf (DecE e) = do IntT <- checkType conf e
|
|
return IntT
|
|
checkType conf ZeroE = return IntT
|
|
checkType conf (Div2E e) = do IntT <- checkType conf e
|
|
return IntT
|
|
checkType conf (TailE e) = do ListT t <- checkType conf e
|
|
return $ ListT t
|
|
checkType conf (HeadE e) = do ListT t <- checkType conf e
|
|
return t
|
|
checkType conf (left :++: right) = do ListT t <- checkType conf left
|
|
ListT u <- checkType conf right
|
|
guard $ t == u
|
|
return $ ListT t
|
|
checkType conf (left ::: right) = do t <- checkType conf left
|
|
ListT u <- checkType conf right
|
|
guard $ t == u
|
|
return $ ListT t
|
|
checkType conf EmptyListE = return ListT
|
|
checkType conf (IsLeafE e) = do TreeT <- checkType conf e
|
|
return BoolT
|
|
checkType conf (TreeValE e) = do TreeT <- checkType conf e
|
|
return undefined -- FIXME
|
|
checkType conf (TreeLeftE e) = do TreeT <- checkType conf e
|
|
return TreeT
|
|
checkType conf (TreeRightE e) = do TreeT <- checkType conf e
|
|
return TreeT
|
|
checkType conf (CreateNodeE {nodeLeft, nodeRoot, nodeRight}) = do TreeT <- checkType conf nodeLeft
|
|
_ <- checkType conf nodeRoot
|
|
TreeT <- checkType conf nodeRight
|
|
return TreeT
|
|
checkType conf (CreateLeafE e) = do _ <- checkType conf e
|
|
return TreeT
|
|
checkType conf (IfE {ifCond, ifDoThen, ifDoElse}) = do BoolT <- checkType conf ifCond
|
|
leftT <- checkType conf ifDoThen
|
|
rightT <- checkType conf ifDoElse
|
|
guard $ leftT == rightT
|
|
return leftT
|
|
checkType conf (SelfE e) = do ListT <- checkType conf e
|
|
return undefined -- FIXME: return oracle retunr type
|
|
checkType conf (InputE e) = undefined -- FIXME: use predefined input indices, pass input types
|
|
checkType _ Hole = Nothing
|
|
-- checkType _ _ = Nothing
|
|
|
|
type Cache = Map Expr (Result Value)
|
|
|
|
eval' :: Cache -> Conf -> Expr -> (Result Value, Cache)
|
|
eval' cache conf expr = case expr `Map.lookup` cache of
|
|
Just result -> (result, cache)
|
|
Nothing -> let result = eval conf expr in
|
|
(result, Map.insert expr result cache)
|
|
|
|
eval'' :: Conf -> Expr -> SyntState (Result Value)
|
|
eval'' conf expr = do cache <- gets syntCache
|
|
let (result, cache') = eval' cache conf expr
|
|
modify $ \st -> st {syntCache = cache'}
|
|
return result
|
|
|
|
------------
|
|
|
|
type Oracle = [Value] -> Maybe Value
|
|
|
|
-- bipartite graph, root is Goal
|
|
newtype Goal = Goal [Maybe Value] -- result or unimportant
|
|
deriving (Read, Show, Eq, Ord)
|
|
-- Map sovled :: Goal -> Expr
|
|
-- Set unsolved
|
|
-- List Resolvers
|
|
data Resolver = Resolver { resolverGoal :: Goal,
|
|
resolverCond :: Goal,
|
|
resolverThen :: Goal,
|
|
resolverElse :: Goal } -- ids ??
|
|
deriving (Read, Show, Eq, Ord)
|
|
|
|
data Synt = Synt { syntExprs :: [(Expr, [Maybe Value])],
|
|
syntSolvedGoals :: Map Goal Expr,
|
|
syntUnsolvedGoals :: Set Goal,
|
|
syntResolvers :: [Resolver], -- Set Resolver,
|
|
syntExamples :: [[Value]],
|
|
syntOracle :: Oracle,
|
|
syntCache :: Cache,
|
|
syntRoot :: Goal}
|
|
type SyntState a = State Synt a
|
|
|
|
------------
|
|
|
|
--fill holes in expr with top-level holes
|
|
fillHoles :: Expr -> [Expr] -> Expr
|
|
fillHoles (Hole :&&: Hole) [left, right] = left :&&: right
|
|
fillHoles (Hole :||: Hole) [left, right] = left :||: right
|
|
fillHoles (NotE Hole) [e] = NotE e
|
|
fillHoles (Hole :=: Hole) [left, right] = left :=: right
|
|
fillHoles (Leq0 Hole) [e] = Leq0 e
|
|
fillHoles (IsEmptyE Hole) [e] = IsEmptyE e
|
|
fillHoles (Hole :+: Hole) [left, right] = left :+: right
|
|
fillHoles (Hole :-: Hole) [left, right] = left :-: right
|
|
fillHoles (IncE Hole) [e] = IncE e
|
|
fillHoles (DecE Hole) [e] = DecE e
|
|
fillHoles ZeroE [] = ZeroE
|
|
fillHoles (Div2E Hole) [e] = Div2E e
|
|
fillHoles (TailE Hole) [e] = TailE e
|
|
fillHoles (HeadE Hole) [e] = HeadE e
|
|
fillHoles (Hole :++: Hole) [left, right] = left :++: right
|
|
fillHoles (Hole ::: Hole) [left, right] = left ::: right
|
|
fillHoles EmptyListE [] = EmptyListE
|
|
fillHoles (IsLeafE Hole) [e] = IsLeafE e
|
|
fillHoles (TreeValE Hole) [e] = TreeValE e
|
|
fillHoles (TreeLeftE Hole) [e] = TreeLeftE e
|
|
fillHoles (TreeRightE Hole) [e] = TreeRightE e
|
|
fillHoles (CreateNodeE {nodeLeft = Hole, nodeRoot = Hole, nodeRight = Hole})
|
|
[nodeLeft, nodeRoot, nodeRight] = CreateNodeE {nodeLeft, nodeRoot, nodeRight}
|
|
fillHoles (CreateLeafE Hole) [e] = CreateLeafE e
|
|
fillHoles (IfE {ifCond = Hole, ifDoThen = Hole, ifDoElse = Hole})
|
|
[ifCond, ifDoThen, ifDoElse] = IfE {ifCond, ifDoThen, ifDoElse}
|
|
fillHoles (SelfE Hole) [e] = SelfE e
|
|
fillHoles (InputE Hole) [e] = InputE e
|
|
fillHoles (InputE ZeroE) [] = InputE ZeroE -- TMP
|
|
fillHoles _ _ = undefined
|
|
|
|
confBySynt :: [Value] -> Expr -> Synt -> Conf
|
|
confBySynt input expr st = Conf {confInput = input,
|
|
confOracle = syntOracle st,
|
|
confExamples = syntExamples st}
|
|
|
|
matchGoal :: Goal -> Expr -> Synt -> Bool
|
|
matchGoal (Goal goal) expr st = let examples = syntExamples st in
|
|
foldl checkOnInput True $ zip examples goal
|
|
where checkOnInput False _ = False
|
|
checkOnInput acc (input, output) = let output' = eval (confBySynt input expr st) expr in
|
|
matchValue output' output -- TODO
|
|
matchValue (Result x) (Just y) = x == y
|
|
matchValue _ Nothing = True
|
|
matchValue _ _ = False
|
|
|
|
------ syntesis steps
|
|
|
|
calcExprOutputs :: Expr -> SyntState [Result Value]
|
|
calcExprOutputs expr = gets (\st -> map (\input -> eval (confBySynt input expr st) expr) $ syntExamples st)
|
|
|
|
matchAnyOutputs :: [Result Value] -> SyntState Bool
|
|
matchAnyOutputs outputs = do exprs <- gets syntExprs
|
|
foldM step False $ map fst exprs
|
|
where step :: Bool -> Expr -> SyntState Bool
|
|
step True _ = return True
|
|
step False expr = do exprOutputs <- calcExprOutputs expr
|
|
return $ outputs == exprOutputs -- and $ zipWith sameResults outputs exprOutputs
|
|
sameResults (Result left) (Result right) = left == right
|
|
sameResults (RecError {}) (RecError {}) = True
|
|
sameResults _ _ = False
|
|
|
|
-- generate next step of exprs, remove copies
|
|
forwardStep :: Expr -> [Expr] -> SyntState (Maybe Expr)
|
|
forwardStep comp args = do let expr = fillHoles comp args
|
|
outputs <- calcExprOutputs expr
|
|
matchedExisting <- gets $ evalState (matchAnyOutputs outputs)
|
|
-- TODO: all RecErrors example could be useful on future cases ?
|
|
if any isFatalError outputs || all isRecError outputs || matchedExisting then return Nothing else do
|
|
modify $ \st -> st { syntExprs = (expr, []) : syntExprs st}
|
|
return $ Just expr
|
|
|
|
splitGoal :: Goal -> [Bool] -> Resolver
|
|
splitGoal resolverGoal@(Goal outputs) selector | length outputs == length selector =
|
|
let resolverCond = Goal $ map (Just . BoolV) selector in
|
|
let resolverThen = Goal $ zipWith (\v b -> if b then v else Nothing) outputs selector in
|
|
let resolverElse = Goal $ zipWith (\v b -> if b then Nothing else v) outputs selector in
|
|
Resolver { resolverGoal, resolverCond, resolverThen, resolverElse }
|
|
|
|
-- split goal by its index and by expr (if any answers matched), check if there is same goals to generated
|
|
splitGoalStep :: Goal -> [Bool] -> SyntState Resolver
|
|
splitGoalStep goal selector = do let r = splitGoal goal selector
|
|
resolvers <- gets syntResolvers
|
|
unless (r `elem` resolvers) $ -- do not add existing resolvers
|
|
modify $ \st -> st { syntUnsolvedGoals = Set.insert (resolverCond r) $
|
|
Set.insert (resolverThen r) $
|
|
Set.insert (resolverElse r) $
|
|
syntUnsolvedGoals st,
|
|
syntResolvers = r : syntResolvers st } -- Set.insert
|
|
return r
|
|
|
|
-- TODO: use expr evaluated outputs ?
|
|
trySolveGoal :: Expr -> Goal -> SyntState Bool
|
|
trySolveGoal expr goal = do doesMatch <- gets $ matchGoal goal expr
|
|
if doesMatch then do
|
|
modify $ \st -> st { syntSolvedGoals = Map.insert goal expr $ syntSolvedGoals st --,
|
|
-- syntUnsolvedGoals = Set.delete goal $ syntUnsolvedGoals st
|
|
}
|
|
return True
|
|
-- trace ("goal solved: " ++ show goal) -- Tmp: trace
|
|
else return False
|
|
|
|
isGoalSolved :: Goal -> SyntState Bool
|
|
isGoalSolved goal = gets (Map.member goal . syntSolvedGoals)
|
|
|
|
goalSolution :: Goal -> SyntState (Maybe Expr)
|
|
goalSolution goal = gets (Map.lookup goal . syntSolvedGoals)
|
|
|
|
-- find all goals solved by new expr, by expr id it's values on examples, remove solved goals
|
|
-- returns found expr
|
|
-- NOTE: goals expected to be resolved
|
|
resolveStep :: (Expr, Expr, Expr) -> Resolver -> SyntState Expr
|
|
-- resolveStep r _ | trace ("resolution: " ++ show r) False = undefined -- TMP: trace
|
|
resolveStep (ifCond, ifDoThen, ifDoElse) r = do let expr = IfE { ifCond, ifDoThen, ifDoElse }
|
|
let goal = resolverGoal r
|
|
modify $ \st -> st { syntSolvedGoals = Map.insert goal expr $ syntSolvedGoals st,
|
|
-- syntUnsolvedGoals = Set.delete goal $ syntUnsolvedGoals st,
|
|
syntExprs = (expr, []) : syntExprs st }
|
|
return expr
|
|
|
|
tryResolve :: Resolver -> SyntState (Maybe Expr)
|
|
-- tryResolve r | trace ("try resolution: " ++ show r) False = undefined -- TMP: trace
|
|
tryResolve r = do condSol <- goalSolution $ resolverCond r
|
|
thenSol <- goalSolution $ resolverThen r
|
|
elseSol <- goalSolution $ resolverElse r
|
|
case (condSol, thenSol, elseSol) of
|
|
(Just condExpr, Just thenExpr, Just elseExpr) -> do
|
|
expr <- resolveStep (condExpr, thenExpr, elseExpr) r
|
|
return $ Just expr
|
|
_ -> return Nothing
|
|
|
|
remakeSynt :: [[Value]] -> [Value] -> SyntState ()
|
|
remakeSynt newInputs newOutputs = do st <- get
|
|
let Goal oldOutputs = syntRoot st
|
|
goals <- gets $ \st -> zip (newInputs ++ syntExamples st)
|
|
(newOutputs ++ map (fromMaybe undefined) oldOutputs)
|
|
initSynt (syntOracle st) goals
|
|
modify (\st' -> st' { syntExprs = syntExprs st })
|
|
|
|
-- clear goal tree up to root, add example, calculate exprs on input (could be recursive ?)
|
|
-- returns new example
|
|
saturateStep :: Expr -> SyntState [[Value]]
|
|
saturateStep expr = do (newInputs, newOutputs) <- gets $ \st -> unzip $ foldl (searchEx st) [] (syntExamples st)
|
|
let exFound = not . null $ newInputs
|
|
when exFound $ remakeSynt newInputs newOutputs
|
|
return newInputs
|
|
where searchEx st [] input = case eval (confBySynt input expr st) expr of
|
|
NewExamples exs -> exs
|
|
_ -> []
|
|
searchEx _ exs _ = exs
|
|
|
|
-- try to find terminating expr
|
|
terminateStep :: Expr -> SyntState (Maybe Expr)
|
|
terminateStep expr = do doesMatch <- gets $ \st -> matchGoal (syntRoot st) expr st
|
|
return $ if doesMatch then Just expr else Nothing
|
|
|
|
------ patterns
|
|
|
|
patterns0 :: [Expr]
|
|
patterns0 = [ZeroE, EmptyListE, InputE ZeroE] -- TMP: NOTE: for faster search
|
|
|
|
patterns1 :: [Expr]
|
|
patterns1 = [NotE Hole, Leq0 Hole,
|
|
IsEmptyE Hole, IncE Hole,
|
|
DecE Hole, Div2E Hole,
|
|
TailE Hole, HeadE Hole,
|
|
-- IsLeafE Hole, TreeValE Hole,
|
|
-- TreeLeftE Hole, TreeRightE Hole,
|
|
-- CreateLeafE Hole,
|
|
SelfE Hole,
|
|
InputE Hole
|
|
]
|
|
|
|
patterns2 :: [Expr]
|
|
patterns2 = [Hole :&&: Hole,
|
|
Hole :||: Hole,
|
|
Hole :=: Hole,
|
|
Hole :+: Hole,
|
|
Hole :-: Hole,
|
|
Hole :++: Hole,
|
|
Hole ::: Hole]
|
|
|
|
patterns3 :: [Expr]
|
|
patterns3 = []
|
|
-- [CreateNodeE {nodeLeft = Hole, nodeRoot = Hole, nodeRight = Hole},
|
|
-- IfE {ifCond = Hole, ifDoThen = Hole, ifDoElse = Hole}]
|
|
|
|
------ generation
|
|
|
|
concatShuffle :: [[a]] -> [a]
|
|
concatShuffle xxs = let xxs' = filter (not . null) xxs in
|
|
if null xxs' then [] else
|
|
map head xxs' ++ concatShuffle (map tail xxs')
|
|
|
|
-- -> n, +1 for top expression
|
|
genNext1 :: [[Expr]] -> [Expr]
|
|
genNext1 = head
|
|
|
|
-- 1 2 3 ... (n - 1) + (n - 1) ... 1 -> n, +1 for top expression
|
|
genNext2 :: [[Expr]] -> [(Expr, Expr)]
|
|
genNext2 exprs = let len = length exprs in
|
|
let exprs' = tail exprs in
|
|
concatShuffle $
|
|
zipWith (\xs ys -> ([(x, y) | x <- xs, y <- ys])) exprs' $
|
|
reverse exprs'
|
|
|
|
-- map genNext2 [1, 1 2, 1 2 3, ..., 1 2 ... (n - 1)] + (n - 1) (n - 2) ... 1 -> n, +1 for top expression
|
|
genNext3 :: [[Expr]] -> [(Expr, Expr, Expr)]
|
|
genNext3 exprs = let exprs' = tail exprs in
|
|
let prefixes = map genNext2 $ tail $ inits exprs' in
|
|
let ends = reverse exprs' in
|
|
concatShuffle $
|
|
zipWith (\xys zs -> ([(x, y, z) | (x, y) <- xys, z <- zs])) prefixes ends
|
|
|
|
-- get list of patterns and holes for forward steps
|
|
genStep :: [[Expr]] -> [(Expr, [Expr])]
|
|
genStep [] = map (, []) patterns0
|
|
genStep xs = concatShuffle [[(p, [x]) | p <- patterns1, x <- genNext1 xs],
|
|
[(p, [x, y]) | p <- patterns2, (x, y) <- genNext2 xs],
|
|
[(p, [x, y, z]) | p <- patterns3, (x, y, z) <- genNext3 xs]]
|
|
|
|
------ algorithm
|
|
|
|
createSynt :: Oracle -> [([Value], Value)] -> Synt
|
|
createSynt oracle goals = let root = Goal $ map (Just . snd) goals in
|
|
Synt { syntExprs = [],
|
|
syntSolvedGoals = Map.empty,
|
|
syntUnsolvedGoals = Set.singleton root,
|
|
syntResolvers = [], -- Set.empty
|
|
syntExamples = map fst goals,
|
|
syntOracle = oracle,
|
|
syntCache = Map.empty, -- ??
|
|
syntRoot = root}
|
|
|
|
initSynt :: Oracle -> [([Value], Value)] -> SyntState ()
|
|
initSynt oracle goals = put $ createSynt oracle goals
|
|
|
|
stepOnAddedExpr :: Expr -> SyntState (Maybe Expr)
|
|
stepOnAddedExpr expr = do newEx <- saturateStep expr
|
|
if not . null $ newEx then do -- redo prev exprs (including current)
|
|
st <- get
|
|
-- trace ("exFound: " ++ show newEx) $ -- TMP: trace
|
|
stepOnAddedExprs $ map fst $ syntExprs st
|
|
else do -- try resolve goals & resolvers, generate new resolvers
|
|
maybeResult <- terminateStep expr
|
|
if isJust maybeResult then return maybeResult else do
|
|
exprOutputs <- calcExprOutputs expr
|
|
-- NOTE: now done in fowardStep
|
|
-- when (foldl (compareExprOutputs exprOutputs) True $ map fst $ syntExprs st) $ modify $ \st -> st { syntExprs = tail $ syntExprs st }
|
|
unsolvedGoals <- gets syntUnsolvedGoals
|
|
foldM_ (const $ trySolveGoal expr) False unsolvedGoals -- solve existing goals
|
|
resolvers <- gets syntResolvers
|
|
foldM_ (const tryResolve) Nothing resolvers -- resolve existing goals
|
|
modify $ \st -> foldl (splitGoalsFold expr exprOutputs) st [syntRoot st] -- TODO: use Set.toList $ syntUnsolvedGoals st ?
|
|
gets $ \st -> syntRoot st `Map.lookup` syntSolvedGoals st
|
|
where splitGoalsFold expr outputs st goal@(Goal expected) = let matches = zipWith matchResult outputs expected in
|
|
if not $ any (fromMaybe False) matches then st else
|
|
let matchesBool = map (fromMaybe True) matches in
|
|
execState (do r <- splitGoalStep goal matchesBool
|
|
exprs <- gets syntExprs
|
|
foldM_ (const $ flip trySolveGoal $ resolverCond r) False $ map fst exprs
|
|
exprs <- gets syntExprs
|
|
foldM_ (const $ flip trySolveGoal $ resolverElse r) False $ map fst exprs
|
|
-- TODO: replace with always solve goal
|
|
trySolveGoal expr (resolverThen r)) st
|
|
matchResult :: Result Value -> Maybe Value -> Maybe Bool -- Nothing for unimportant matches marked as Nothing
|
|
matchResult (NewExamples {}) _ = Just False
|
|
matchResult _ Nothing = Nothing
|
|
matchResult (RecError {}) _ = Just False
|
|
matchResult (Result x) (Just y) = Just $ x == y
|
|
-- compareExprOutputs outputs False _ = False
|
|
-- compareExprOutputs outputs True e = do eOutputs <- calcExprOutputs e
|
|
-- outputs == eOutputs
|
|
|
|
stepOnAddedExprs :: [Expr] -> SyntState (Maybe Expr)
|
|
stepOnAddedExprs = foldM step Nothing
|
|
where step :: Maybe Expr -> Expr -> SyntState (Maybe Expr)
|
|
step res@(Just {}) _ = return res
|
|
step Nothing expr = stepOnAddedExpr expr
|
|
|
|
-- returns result and valid expr
|
|
stepOnNewExpr :: Expr -> [Expr] -> SyntState (Maybe Expr, Maybe Expr)
|
|
stepOnNewExpr comp args = do expr <- forwardStep comp args
|
|
case expr of
|
|
Just expr' -> do res <- stepOnAddedExpr expr'
|
|
return (res, expr)
|
|
Nothing -> return (Nothing, Nothing)
|
|
|
|
-- stages:
|
|
-- init state
|
|
-- 1. gen new step exprs
|
|
-- 2. process exprs by one
|
|
-- 3. try terminate / saturate
|
|
-- 4. try to solve existing goals
|
|
-- 5. make resolutions if goals solved
|
|
-- 6. split goals, where expr partially matched
|
|
syntesisStep :: Int -> [[Expr]] -> SyntState (Maybe Expr)
|
|
syntesisStep 0 _ = return Nothing
|
|
syntesisStep steps prevExprs = -- oracle should be defined on the provided emample inputs
|
|
do let genExprs = genStep prevExprs
|
|
(result, validExprs) <- foldM step (Nothing, []) genExprs
|
|
if isJust result
|
|
then return result
|
|
else trace ("steps left: " ++ show (steps - 1)) $ syntesisStep (steps - 1) (validExprs : prevExprs)
|
|
where step res@(Just {}, _) _ = return res
|
|
step (Nothing, exprs) expr = do (res, val) <- uncurry stepOnNewExpr expr
|
|
return (res, maybeToList val ++ exprs)
|
|
|
|
syntesis' :: [[Expr]] -> Int -> Oracle -> [[Value]] -> (Maybe Expr, Synt)
|
|
syntesis' exprs steps oracle inputs = -- oracle should be defined on the providid examples
|
|
let outputs = map (fromMaybe undefined . oracle) inputs in
|
|
runState (syntesisStep steps exprs) (createSynt oracle $ zip inputs outputs)
|
|
|
|
syntesis :: Int -> Oracle -> [[Value]] -> (Maybe Expr, Synt)
|
|
syntesis = syntesis' []
|
|
|
|
------ examples
|
|
|
|
mainExamples :: [[Value]]
|
|
mainExamples = [[ListV [IntV 1, IntV 2, IntV 3]]]
|
|
|
|
allExamples :: [[Value]]
|
|
-- allExamples = [[ListV [IntV 2, IntV 3]], [ListV [IntV 3]], [ListV []]]
|
|
allExamples = [[ListV [IntV 1, IntV 2, IntV 3]], [ListV [IntV 2, IntV 3]], [ListV [IntV 3]], [ListV []]]
|
|
|
|
--- reverse
|
|
|
|
reverseOracle :: Oracle
|
|
-- reverseOracle [ListV xs] = Just $ ListV $ reverse xs
|
|
reverseOracle [ListV xs] | all isInt xs = Just $ ListV $ reverse xs
|
|
reverseOracle _ = Nothing
|
|
|
|
reverseExpr :: Expr
|
|
reverseExpr = IfE { ifCond = IsEmptyE (InputE ZeroE),
|
|
ifDoThen = EmptyListE,
|
|
ifDoElse = SelfE (TailE (InputE ZeroE) ::: EmptyListE) :++: (HeadE (InputE ZeroE) ::: EmptyListE) }
|
|
|
|
reverseConf :: Conf
|
|
reverseConf = Conf { confInput = head allExamples,
|
|
confOracle = reverseOracle,
|
|
confExamples = allExamples }
|
|
|
|
--- stutter
|
|
|
|
stutterOracle :: Oracle
|
|
stutterOracle [ListV (x : xs)] | isInt x = do ListV xs' <- stutterOracle [ListV xs]
|
|
return $ ListV $ x : x : xs'
|
|
stutterOracle [ListV []] = Just $ ListV []
|
|
stutterOracle _ = Nothing
|
|
|
|
stutterExpr :: Expr
|
|
stutterExpr = IfE { ifCond = IsEmptyE (InputE ZeroE),
|
|
ifDoThen = EmptyListE,
|
|
ifDoElse = HeadE (InputE ZeroE) ::: (HeadE (InputE ZeroE) ::: SelfE (TailE (InputE ZeroE) ::: EmptyListE)) }
|
|
|
|
stutterConf :: Conf
|
|
stutterConf = Conf { confInput = head allExamples,
|
|
confOracle = stutterOracle,
|
|
confExamples = allExamples }
|
|
|
|
--- length
|
|
|
|
lengthOracle :: Oracle
|
|
lengthOracle [ListV xs] = Just $ IntV $ length xs
|
|
lengthOracle _ = Nothing
|
|
|
|
lengthExpr :: Expr
|
|
lengthExpr = IfE { ifCond = IsEmptyE (InputE ZeroE),
|
|
ifDoThen = ZeroE,
|
|
ifDoElse = IncE $ SelfE (TailE (InputE ZeroE) ::: EmptyListE) }
|
|
|
|
lengthConf :: Conf
|
|
lengthConf = Conf { confInput = head allExamples,
|
|
confOracle = lengthOracle,
|
|
confExamples = allExamples }
|
|
|
|
---
|
|
|
|
idOracle :: Oracle
|
|
idOracle [x] = Just x
|
|
idOracle _ = Nothing
|
|
|
|
main = do steps <- readLn :: IO Int
|
|
print $ fst $ syntesis steps reverseOracle allExamples
|
|
|
|
-- main = print $ (SelfE (TailE (InputE ZeroE) ::: EmptyListE) :++: (HeadE (InputE ZeroE) ::: EmptyListE)) `elem` (map fst $ syntExprs $ snd $ syntesis 10 reverseOracle allExamples)
|
|
-- Just (IfE {ifCond = IsEmptyE (InputE ZeroE), ifDoThen = InputE ZeroE :++: TailE (InputE ZeroE :++: (InputE ZeroE :++: (ZeroE ::: EmptyListE))), ifDoElse = SelfE (TailE (InputE ZeroE) ::: EmptyListE) :++: (HeadE (InputE ZeroE) ::: EmptyListE)})
|