This commit is contained in:
Dmitry Boulytchev 2018-11-19 00:20:43 +03:00
parent 29efb45353
commit ef8ea21216
5 changed files with 140 additions and 103 deletions

View file

@ -11,7 +11,7 @@ For an array $(n, f)$ we assume $\dom{f}=[0\,..\,n-1]$. An element selection fun
\[
\begin{array}{c}
[\bullet] : \mathscr A (\mathscr E) \to \mathbb N \to \mathscr E\\[2mm]
\bullet[\bullet] : \mathscr A (\mathscr E) \to \mathbb N \to \mathscr E\\[2mm]
(n, f) [i] = \left\{
\begin{array}{rcl}
f\;i &, & i < n\\
@ -21,22 +21,6 @@ For an array $(n, f)$ we assume $\dom{f}=[0\,..\,n-1]$. An element selection fun
\end{array}
\]
\begin{comment}
A set of (ASCII) characters:
\[
\mathscr C = [0\,..\,255]
\]
A string is an array of characters:
\[
\mathscr S = \mathscr A (\mathscr C)
\]
Adding strings and arrays to the language changes the set of values the programs operate on:
\end{comment}
We represent arrays by \emph{references}. Thus, we introduce a (linearly) ordered set of locations
\[
@ -57,12 +41,16 @@ unambiguously discriminate between the shapes of each value. To access arrays, w
\mathscr M = \mathscr L \to \mathscr A\,(\mathscr V)
\]
We now add two more components to the states: a memory function $\mu$ and the first free memory location $l_m$.
We now add two more components to the configurations: a memory function $\mu$ and the first free memory location $l_m$, and
define the following primitive:
%Enriching the value set extends the definitions of state (which now has to map variable names to values) and
%stack (similarly), but does not affect the definition of input/output streams, read and write primitives, etc.
\[
\primi{mem}{\inbr{s,\,\mu,\,l_m,\,i,\,o,\,v}}=\mu
\]
\subsection{Adding arrays/strings on expression level}
which gives a memory function from a configuration.
\subsection{Adding arrays on expression level}
On expression level, abstractly/concretely:
@ -74,19 +62,18 @@ On expression level, abstractly/concretely:
\end{array}
\]
In addition, in a concrete syntax we supply two special forms for strings: \llang{'$x$'} as a denotation for integer code of ASCII symbol
$x$, and \llang{"..."}~--- a string constant.
%In addition, in a concrete syntax we supply two special forms for strings: \llang{'$x$'} as a denotation for integer code of ASCII symbol
%$x$, and \llang{"..."}~--- a string constant.
The semantics of enriched expressions is modified as follows. First, we add two additional premises to the rule for binary operators:
\setsubarrow{_{\mathscr E}}
\[\trule{\begin{array}{c}
\withenv{\Phi}{\trans{c}{A}{c^\prime=\inbr{\_,\, \_,\, \_,\, a}}}\\
\withenv{\Phi}{\trans{c^\prime}{B}{\inbr{\sigma^{\prime\prime}, i^{\prime\prime}, o^{\prime\prime}, b}}}\\
a\in\mathbb Z,\,b\in\mathbb Z
\[\trule{\begin{array}{ccc}
\withenv{\Phi}{\trans{c}{A}{c^\prime}} &\phantom{XXXXX}& \withenv{\Phi}{\trans{c^\prime}{B}{c^{\prime\prime}}}\\
\primi{val}{c^\prime}\in\mathbb Z & & \primi{val}{c^{\prime\prime}}\in\mathbb Z
\end{array}
}
{\withenv{\Phi}{\trans{c}{A\otimes B}{\inbr{\sigma^{\prime\prime}, i^{\prime\prime}, o^{\prime\prime}, a\oplus b}}}}
{\withenv{\Phi}{\trans{c}{A\otimes B}{\primi{ret}{c^{\prime\prime}\;(\primi{val}{c^\prime}\oplus \primi{val}{c^{\prime\prime}})}}}}
\ruleno{Binop}
\]
@ -94,31 +81,40 @@ These two premises ensure that both operand expressions are evaluated into integ
kinds of expressions (see Figure~\ref{array_expressions}).
\begin{figure}
\[\trule{\begin{array}{c}
\withenv{\Phi}{\trans{c}{E}{c^\prime=\inbr{\_, \_, \_, l}}}\\
\withenv{\Phi}{\trans{c^\prime}{J}{\inbr{s^{\prime\prime}=\inbr{\_,\, \_,\, \_,\, \mu,\,\_},\, i^{\prime\prime},\, o^{\prime\prime},\, j}}}\\
l\in \mathscr L,\,(n,\,f)=\mu\,\;l\,j\in\mathbb N,\,j<n
\[\trule{\begin{array}{ccc}
\withenv{\Phi}{\trans{c}{e}{c^\prime}} &\phantom{XXXX} &\withenv{\Phi}{\trans{c^\prime}{j}{c^{\prime\prime}}}\\
l=\primi{val}{c^\prime} & &j=\primi{val}{c^{\prime\prime}}\\
l\in\mathscr L & &j\in\mathbb N\\
(n,\,f)=\primi{mem}{l} & &j<n
\end{array}}
{\withenv{\Phi}{\trans{c}{E\,\mathtt{[}J\mathtt{]}}{\inbr{s^{\prime\prime}, i^{\prime\prime}, o^{\prime\prime}, f\,j}}}}
{\withenv{\Phi}{\trans{c}{e\,\mathtt{[}j\mathtt{]}}{\primi{ret}{c^{\prime\prime}(f\;j)}}}}
\ruleno{ArrayElement}
\]
\[\trule{\withenv{\Phi}{\trans{c_j}{e_j}{c_{j+1}=\inbr{\inbr{\sigma_g^{j+1},\,S^{j+1},\,\sigma_l^{j+1},\,\mu^{j+1},\,l_{m_{j+1}}}, i_{j+1}, o_{j+1}, a_j}}},\,j\in [0..k]}
{\withenv{\Phi}{\trans{c_0}{\mathtt{[}e_0, e_1,...,e_k\mathtt{]}}{\inbr{\inbr{\sigma_g^{j+1},\,S^{j+1},\,\sigma_l^{j+1},\,\mu^{j+1}[l_{m_{k+1}}\gets (k,\,\lambda i\,.\,a_i)],\, l_{m_{k+1}+1}}, i_{k+1}, o_{k+1}, l_{m_{k+1}}}}}}
\ruleno{ArrayConstructor}
\]
\vskip5mm
\[\trule{\begin{array}{c}
\withenv{\Phi}{\trans{c}{E}{\inbr{s^{\prime\prime}=\inbr{\_,\,\_,\,\_,\,\mu,\,\_}, i^{\prime\prime}, o^{\prime\prime}, l}}}\\
l\in\mathscr L,\,(n,\,f)=\mu\;l
\withenv{\Phi}{\trans{c_j}{e_j}{c_{j+1}}},\,j\in [0..k]\\
\inbr{s,\,\mu,\,l_m,\,i,\,o,\,\_}=c_{k+1}
\end{array}
}
{\withenv{\Phi}{\trans{c_0}{\mathtt{[}e_0, e_1,...,e_k\mathtt{]}}{\inbr{s,\,\mu\,[l_m\gets(k+1,\,\lambda n.\primi{val}{c_n})],\,l_{m+1},\,i,\,o,\,l_m}}}}
\ruleno{Array}
\]
\vskip5mm
\[\trule{\begin{array}{c}
\withenv{\Phi}{\trans{c}{e}{c^\prime}}\\
l=\primi{val}{c^\prime}\\
l\in\mathscr L\\
(n,\,f)=(\primi{mem}{c^\prime})\;l
\end{array}
}
{\withenv{\Phi}{\trans{c}{E\mathtt{.length}}{\inbr{s^{\prime\prime}, i^{\prime\prime}, o^{\prime\prime}, n}}}}
{\withenv{\Phi}{\trans{c}{e\mathtt{.length}}{\primi{return}{c^\prime\;n}}}}
\ruleno{ArrayLength}
\]
\caption{Big-step Operational Semantics for Array Expressions}
\label{array_expressions}
\end{figure}
\subsection{Adding arrays/strings on statement level}
\subsection{Adding arrays on statement level}
On statement level, we add the single construct:
@ -127,17 +123,30 @@ On statement level, we add the single construct:
\]
This construct is interpreted as an assignment to an element of an array. The semantics of this construct is described by the following rule:
\[
\trule{\setsubarrow{_{\mathscr E}}
\begin{array}{c}
\withenv{\Phi}{\trans{c}{E}{c^\prime=\inbr{\_,\_,\_, (n,\,f)}}}\\
\withenv{\Phi}{\trans{c^\prime}{J}{c^{\prime\prime}=\inbr{\_,\_,\_,j}}}\\
\withenv{\Phi}{\trans{c^{\prime\prime}}{F}{c^{\prime\prime\prime}=\inbr{s^{\prime\prime},i^{\prime\prime},o^{\prime\prime},y}}}\\
j\in\mathbb N,\,j<n\\
\setsubarrow{}\withenv{\llang{skip},\,\Phi}{\trans{\inbr{\mathtt{update}(s^{\prime\prime}, E, (n,\,f [j\gets y])),i^{\prime\prime},o^{\prime\prime},\hbox{---}}}{K}{\widetilde{c}}}
\begin{array}{ccccc}
\withenv{\Phi}{\trans{c}{e}{c^\prime}} & \phantom{XXX} & \withenv{\Phi}{\trans{c^\prime}{j}{c^{\prime\prime}}} & \phantom{XXX} & \withenv{\Phi}{\trans{c^{\prime\prime}}{g}{\inbr{s,\mu,l_m,i,o,v}}}\\
l=\primi{val}{c^\prime} & & i=\primi{val}{c^{\prime\prime}} & & \\
l\in\mathscr L & & i\in\mathbb N & & \\[3mm]
\multicolumn{5}{c}{(n,\,f)=\mu\;l}\\
\multicolumn{5}{c}{i<n}\\
\multicolumn{5}{c}{\setsubarrow{}\withenv{\llang{skip},\,\Phi}{\trans{\inbr{s,\,\mu\,[l\gets (n,\,f\,[i\gets x])],\,l_m,\,i,\,o,\,\hbox{---}}}{K}{\widetilde{c}}}}
\end{array}
}
{\setsubarrow{}\withenv{K,\,\Phi}{\trans{c}{E\mathtt{[}J\mathtt{]}\llang{:=}F}{\widetilde{c}}}}
{\setsubarrow{}\withenv{K,\,\Phi}{\trans{c}{e\mathtt{[}j\mathtt{]}\llang{:=}g}{\widetilde{c}}}}
\ruleno{ArrayAssign}
\]
\subsection{Strings}
With arrays in our hands, we can easily add strings as arrays of characters. In fact, on the source language the strings can be
introduced as a syntactic extension:
\begin{enumerate}
\item we add a character constants \llang{'c'} as a shortcut for their integer codes;
\item we add a string literals \llang{"abcd..."} as a shortcut for arrays \llang{['a', 'b', 'c', 'd', ...]}.
\end{enumerate}
Nothing else has to be done~--- now we have mutable reference-representable strings.